Skip to main content
Log in

Glycine potentiates the action of some anticonvulsant drugs in some seizure models

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The anticonvulsant effect of either phenobarbital or dilantin was potentiated by exogenous glycine in DBA/2 audiogenic seizure mice and in 3-mercaptopropionic acid-induced seizures. In seizures caused by pentylenetetrazol, glycine potentiated the anticonvulsant effect of phenobarbital only slightly; in combination with dilantin, which was ineffective by itself, it did not have an effect. Valproic acid, in large doses, prevented 3-mercaptopropionic acid-induced seizures; glycine did not potentiate its effect. Glycine thus potentiates anticonvulsant effects, but only of some drugs and only in some of the seizure models. This suggests that the mechanism of the anticonvulsant effect of glycine is similar to that of some of the anticonvulsant drugs such as dilantin and different from others, and that this mechanism is not effective in all seizure models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toth, E., Lajtha, A., Sarhan, S., andSeiler, N. 1983. Anticonvulsant effects of some inhibitory neurotransmitter amino acids. Neurochem. Res. 8:291–301.

    PubMed  Google Scholar 

  2. Wood, D. J., Watson, J. W., andStacey, E. N. 1966. A comparative study of hyperbaric oxygen-induced and drug-induced convulsion with particular reference to α-aminobutyric acid metabolism. J. Neurochem. 13:361–370.

    Google Scholar 

  3. Karlsson, A., Fonnum, F., Malthe-Sorenssen, D., andStorm-Mathisen, J. 1974. Effect of the convulsive agent 3-mercaptopropionic acid on the levels of GABA, other amino acids and glutamate decarboxylase in different regions of the rat brain. Biochem. Pharmacol. 23:3053–3061.

    PubMed  Google Scholar 

  4. Toth, E., andLajtha, A. 1981. Elevation of cerebral levels of nonessential amino acids in vivo by administration of large doses. Neurochem. Res. 6:1309–1317.

    PubMed  Google Scholar 

  5. Goldblatt, D., Konow, A., Shoulson, I., andMacmath, T. 1971. Effect of anticonvulsants on seizures in gerbils. Neurology 21:433–434.

    Google Scholar 

  6. Bradford, H. F. 1976. On amino acid involvement in basic mechanisms of the epilepsies, Pages 192–212,in Bradford, H. F. andMarsden, D. D. (eds), Biochemistry and Neurology. Academic Press, London.

    Google Scholar 

  7. Patsalos, P. N., andLascelles, P. T. 1981. Changes in regional brain levels of amino acid putative neurotransmitters after prolonged treatment with the anticonvulsant drugs diphenylhydantoin, phenobarbitone, sodium valproate, ethosuximide, and sulthiame in the rat. J. Neurochem. 36:688–695.

    PubMed  Google Scholar 

  8. Saad, S. F., El Masry, A. M. andScott, P. M. 1972. Influence of certain anticonvulsants on the concentration of α-aminobutyric acid in the cerebral hemispheres of mice. Eur. J. Pharmacol. 17:386–392.

    PubMed  Google Scholar 

  9. Chapman, A. G., Riley, K., Evans, M. C., andMeldrum, B. S. 1982. Acute effects of sodium valproate and α-vinyl GABA on regional amino acid metabolism in the rat brain. Neurochem. Res. 7:1089–1105.

    PubMed  Google Scholar 

  10. Loscher, W. 1979, 3-mercaptopropionic acid: convulsant properties, effects on enzymes of the γ-aminobutyrate system in mouse brain and antagonism by certain anticonvulsant drugs, γ-aminooxyacetic acid and gabaculine. Biochem. Pharmacol. 28:1397–1407.

    PubMed  Google Scholar 

  11. Meldrum, B. S. 1975. Epilepsy and α-aminobutyric acid mediated inhibition. Int. Rev. Neurobiol. 17:1–36.

    PubMed  Google Scholar 

  12. MacDonald, L. R., andBarker, J. L. 1978. Different action of anticonvulsant and anesthetic barbiturates revealed by use of cultured mammalian neurons. Science 20:775–777.

    Google Scholar 

  13. Evans, H. R. 1979. Potentiation of the effects of GABA by phenobarbitone. Brain Res. 171:113–120.

    PubMed  Google Scholar 

  14. Vernadakis, A., andWoodbury, D. M. 1960. Effects of diphenylhydantoin and adrenocortical steroids on free glutamic acid, glutamine and GABA concentration of rat cerebral cortex. Pages 242–247,Roberts, E. (ed.), Inhibition in the Nervous System and GABA, Pergamon Press, Oxford.

    Google Scholar 

  15. Ashton, D., andWanquier, A. 1979. Effects of some anti-epileptic, neuroleptic and gabaminergic drugs on convulsions induced by d,l-allylglycine. Pharmacol. Biochem. Behav. 11:221–226.

    PubMed  Google Scholar 

  16. Weinberger, J., Nicklas, W. J., andBerl, S. 1976. Mechanism of action of anticonvulsants. Neurology 26:162–166.

    PubMed  Google Scholar 

  17. Willow, M., Bornstein, J. C., andJohnston, G. A. R. 1980. The effects of anesthetic and convulsant barbiturates on the effect of [3H]d-aspartate from brain minislices. Neurosci. Lett. 18:185–190.

    PubMed  Google Scholar 

  18. Shou, R. S., andFerrendelli, A. J. 1976. Phentoin, phenobarbital and ethosuximide and calcium influx in isolated presynaptic ending. Arch. Neurol. 33:626–629.

    PubMed  Google Scholar 

  19. Prichard, J. W. 1982. Phenobarbital: mechanism of action, Pages 365–376,in Woodbury, D. M., Penry, J. K., andPippenger, C. E., (eds.), Antiepileptic Drugs, Second Edition, Raven Press, New York.

    Google Scholar 

  20. Hadfield, M. G., andBoykin, M. E. 1974. Effect of diphenylhydantoin administered in vivo on3H-norepinephrine uptake in rat synaptosomes. Res. Commun. Chem. Pathol. Pharmacol. 7:209–212.

    PubMed  Google Scholar 

  21. Hadfield, M. G. 1972. Uptake and binding of catecholamines: effect of diphenylhydantoin and a new mechanism of action. Arch. Neurol. 26:78–84.

    PubMed  Google Scholar 

  22. Chase, T. N., Katz, R. I., andKopin, I. J. 1969. Effect of anticonvulsant on brain serotonin. Trans. Neurol. Assoc. 94:236–238.

    Google Scholar 

  23. Woodbury, D. M. 1955. Effects of diphenylhydantoin on electrolytes and radiosodium turnover in brain and other tissues of normal hyponatremic and postictal rats. J. Pharmacol Exp. Ther. 115:74–95.

    PubMed  Google Scholar 

  24. Levin, E., andBlack, V. 1971. The effect of diphenylhydantoin administration on sodium-potassium activated ATPase in cortex. Neurology 21:647–651.

    PubMed  Google Scholar 

  25. DeLorenzo, R. J. 1983. Calcium-calmodulin protein phosphorylation in neuronal transmission. Adv. Neurol. 34:325–328.

    PubMed  Google Scholar 

  26. Bowling, A., andDeLorenzo, R. J. 1982. Micromolar affinity benzodiazepine receptors: identification and characterization in the central nervous system. Science 216:1247–1250.

    PubMed  Google Scholar 

  27. Jaeken, J., Corbeel, L., Casaer, P., Carchon, H., Eggermont, E., andEeckels, R. 1977. Dipropylacetate (valproate) and glycine metabolism. Lancet 2:617.

    Google Scholar 

  28. Verity, C. M., Applegarth, D. A., Farrell, K., andKirby, L. T. 1984. The influence of anticonvulsants on fasting plasma ammonia and amino acid levels. Clin. Biochem. 16:344–345.

    Google Scholar 

  29. Mortensen, P. B., Kolvraa, S., andChristensen, E. 1980. Inhibition of the glycine cleavage system: hyperglycinemia and hyperglycinuria caused by valproic acid. Epilepsia 21:563–569.

    PubMed  Google Scholar 

  30. Godin, Y., Heiner, L., Mark, J. andMandel, P. 1969. Effects of Di-n-propylacetate, an anticonvulsive compound, on GABA metabolism. J. Neurochem. 16:869–873.

    PubMed  Google Scholar 

  31. Snead, O. C. 1983. On the sacred disease: the neurochemistry of epilepsy. Int. Rev. Neurobiol. 24:93–179.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toth, E., Lajtha, A. Glycine potentiates the action of some anticonvulsant drugs in some seizure models. Neurochem Res 9, 1711–1718 (1984). https://doi.org/10.1007/BF00968081

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968081

Keywords

Navigation