Skip to main content
Log in

Relationship of extracellular dopamine in striatum of newborn piglets to cortical oxygen pressure

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The present studies describes the relationship between extracellular dopamine in striatum of newborn piglets and cortical oxygen pressure. The extracellular level of dopamine was measured by in vivo microdialysis and the oxygen pressure in the cortex was measured by phosphorescence lifetime of oxygen probe in the blood. Controlled, graded levels of hypoxic insult to the brain of animals were generated by decreasing of the oxygen fraction in the inspired gas (FiO2) from 21% to 14%, 11%, and 9%. This resulted in decrease in the cortical oxygen pressure from 31–35 Torr to about 24 Torr, 15 Torr and 4 Torr, respectively. The changes in extracellular level of dopamine, DOPAC and HVA were dependent on changes in cortical oxygen pressure. Stepwise decrease in the cortical oxygen pressure (see above) caused increases in extracellular dopamine of about 80%, 200% and 550%, respectively. The levels of DOPAC and HVA progressively decreased and when cortical oxygen decreased to 4–6 Torr were about 50% and 70% of control. respectively. After return of FiO2 to control (21%), the cortical oxygen pressure rapidly increased to above normal, then returned to control values. The extracellular levels of dopamine, DOPAC, and HVA recovered more slowly, attaining control values in about 30 minutes. The data show that extracellular levels of dopamine increase with even very small decreases in oxygen pressure. Thus, there is no “oxygen reserve” which protects dopamine release and metabolism from decrease in oxygen pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, A. J., Zornow, M. H., Scheller, M. S., Yaksh, T. L., Skilling, S. R., Smullin, D. H., Larson, A. A., and Kuczenski, R. 1991. Changes in extracellular concentration of glutamate, aspartate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rabbit brain. J. Neurochem. 57:1370–1379.

    Google Scholar 

  2. Globus, M. Y-T., Busto, R., Dietrich, W. D., Martinez, E., Valdes, I., and Ginsberg, M. D. 1988. Effect of ischemia on the in vivo release of striatal dopamine, glutamate and alpha-aminobutyric acid studied by intracerebral microdialysis. J. Neurochem. 51:1455–1464.

    Google Scholar 

  3. Akiyama, Y., Ito, A., Koshimura, K., Ohue, T., Yamagata, S., Miwa, S., and Kikuchi, H. 1991. Effects of transient forebrain ischemia and reperfusion on function of dopaminergic neurons and dopamine reuptake in vivo in rat striatum. Brain Research 561:120–127.

    Google Scholar 

  4. Damsma, G., Boisvert, D. P., Mudrick, L. A., Wenkstern, D., and Fibiger, H. C. 1990. Effects of transient forebrain ischemia and pargyline on extracellular concentrations of dopamine, serotonin and their metabolites in the rat striatum as determined by in vivo microdialysis. J. Neurochem. 54:801–808.

    Google Scholar 

  5. Phebus, L. A., and Clemens, J. A. 1989. Effects of transient, global ischemia on striatal extracellular dopamine, serotonin and their metabolites. Life Sci. 44:1335–1342.

    Google Scholar 

  6. Sarna, G. S., Obrenovitch, T. P., Matsumoto, T., Symon, L., and Curzon, G. 1990. Effect of transient cerebral ischaemia and cardiac arrest on brain extracellular dopamine and serotonin as determined by in vivo dialysis in the rat. J. Neurochem. 55:937–940.

    Google Scholar 

  7. Slivka, A., Brannan, T. T., Weinberger, J., Knott, P. J., and Cohen, G. 1988. Increase in extracellular dopamine in the striatum during cerebral ischemia: A study utilizing cerebral microdialysis. J. Neurochem. 50:1714–1718.

    Google Scholar 

  8. Wood, E. R., Coury, A., Blaha, Ch. D., and Phillips, A. G. 1992. Extracellular dopamine in the rat striatum during ischemia and reperfusion as measured by in vivo microdialysis. Brain Res. 591:151–159.

    Google Scholar 

  9. Obrenovitch, T. P., Sarna, G. S., Matsumoto, T., and Symon, L. 1990. Extracellular striatal dopamine and its metabolites during transient cerebral ischaemia. J. Neurochem. 54:1526–1532.

    Google Scholar 

  10. Knapp, A. G., and Dowling, J. E. 1987. Dopamine enhances excitatory amino acid-gated conductances in cultured retinal horizontal cells. Nature, 325:437–439.

    Google Scholar 

  11. Ginsberg, M. D., Graham, D. I., and Busto, R. 1985. Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology. Ann. Neurol. 18:470–481.

    Google Scholar 

  12. Slivka, A., and Cohen, G. 1985. Hydroxyl radical attack on dopamine. J. Biol. Chem. 260:15466–15472.

    Google Scholar 

  13. Silverstein, F. S., and Johnston, M. V. 1984. Effects of hypoxia-ischemia on monoamine metabolism in the immature brain. Ann. Neurol. 15:342–347.

    Google Scholar 

  14. Silverstein, F. S., Buchanan, K., and Johnston, M. V. 1986. Perinatal hypoxia-ischemia disrupts striatal high-affinity [3H] glutamate uptake into synaptosomes. J. Neurochem. 47:1614–1619.

    Google Scholar 

  15. Gordon, K., Statman, D., Johnston, M. V., Robinson, T. E., Becker, J. B., and Silverstein, F. S. 1990. Transient hypoxia alters striatal catecholamine metabolim in immature brain: An in vivo microdialysis study. J. Neurochem. 54:605–611.

    Google Scholar 

  16. Vanderkooi, J. M., Maniara, G., Green, T. J., and Wilson, D. F. 1987. An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J. Biol. Chem. 262:5476–5482.

    Google Scholar 

  17. Rumsey, W. L., Vanderkooi, J. M., and Wilson, D. F. 1988. Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue. Science 241:1649–1651.

    Google Scholar 

  18. Wilson, D. F., Pastuszko, A., DiGiacomo, J. E., Pawlowski, M., Schneiderman, R., and Delivoria-Papadopoulos, M. 1991. Effect of hyperventilation on oxygenation of the brain cortex of newborn piglets. J. App. Physiol. 70(6):2691–2696.

    Google Scholar 

  19. Pastuszko, A., Lajevardi, S. N., Chen, J., Tammela, O., Wilson, D. F., and Delivoria-Papadopoulos, M. 1993. Effect of graded levels of tissue oxygen pressure on dopamine metabolism in striatum of newborn piglets. J. Neurochem. 60:161–166.

    Google Scholar 

  20. Freeman, G. B., and Gibson, G. E. 1986. Effect of decreased oxygen on in vitro release of endogenous 3,4-dihydroxyphenylethylamine from mouse striatum. J. Neurochem. 47:1924–1931.

    Google Scholar 

  21. Pastuszko, A., Wilson, D. F., and Erecinska, M. 1982. Neurotransmitters metabolism in rat brain synaptosomes: Effect of anoxia and pH. J. Neurochem. 38:1657–1667.

    Google Scholar 

  22. Saijoh, K., Fujiwara, H., and Tanaka, C. 1985. Influence of hypoxia on release and uptake of neurotransmitters in guinea pig striatal slices: dopamine and acetylocholine. Jpn. J. Pharmacol. 39:529–539.

    Google Scholar 

  23. MacMillan, B., and Siesjo, B. K. 1971. Critical oxygen tensions in the brain. Acta Physiolog. Scand. 82:412–414.

    Google Scholar 

  24. Brown, R. M., Kehr, W., and Carlsson, A. 1975. Functional and biochemical aspects of catecholamine metabolism in brain under hypoxia. Brain Res. 85:491–509.

    Google Scholar 

  25. Cvejic, V., Micic, D. V., Djuricic, B. M., Mrsulja, B. J., and Mrsulja, B. B. 1980. Monoamines and related enzymes in cerebral cortex and basal ganglia following transient ischemia in gerbils. Acta Neuropathol. 51:71–77.

    Google Scholar 

  26. Davis, J. N., and Carlsson, A. 1973. The effect of hypoxia on monoamine synthesis, levels and metabolism in rat brain. J. Neurochem. 21:789–790.

    Google Scholar 

  27. Globus, M. Y-T., Ginsberg, M. D., Dietrich, W. D., Busto, R., and Scheinberg, P. 1987. Substantia nigra lesion protects against ischemic damage in the striatum. Neurosci. Letters 80:251–256.

    Google Scholar 

  28. Weinberger, J., Nieves-Rosa, J., and Cohen, G. 1985. Nerve terminal damage in cerebral ischemia: protective effect of alphamethyl-para-tyrosine. Stroke, 16:864–870.

    Google Scholar 

  29. Matsui, Y., and Kumagae, Y. 1991. Monoamine oxidase inhibitors prevents striatal neuronal necrosis induced by transient fore-brain ischemia. Neuroscience Letters, 126:175–178.

    Google Scholar 

  30. Miwa, S., Fujiwara, M., Inoue, M., and Fujiwara, M. 1986. Effects of hypoxia on the activities of noradrenergic and dopaminergic neurons in the rat brain. J. Neurochem. 47:63–69.

    Google Scholar 

  31. Ihle, W., Gross, J., and Moller, R. 1985. Effect of chronic postnatal hypoxia on dopamine uptake by synaptosomes from striatum of adult rats. Biomed. Biochem. Acta, 44:433–437.

    Google Scholar 

  32. Seidler, F. J., and Slotkin, T. A. 1990. Effects of acute hypoxia on neonatal rat brain: regionally selective, long term alterations in catecholamine levels and turnover. Brain Res. Bull. 24:157–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CC., Lajevardi, N.S., Tammela, O. et al. Relationship of extracellular dopamine in striatum of newborn piglets to cortical oxygen pressure. Neurochem Res 19, 649–655 (1994). https://doi.org/10.1007/BF00967702

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00967702

Key Words

Navigation