Skip to main content
Log in

Synaptosomal non-mitochondrial ATPase activities and drug treatment

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Energy-using non-mitochondrial ATPases were assayed in rat cerebral cortex synaptosomes and synaptosomal subfractions, namely synaptosomal plasma membranes and synaptic vesicles. The following enzyme activities were evaluated: Na+, K+-ATPase; high- and low-affinity Ca2+-ATPase; basal Mg2+-ATPase; Ca2+, Mg2+-ATPase. The evaluations were performed after four week-treatment with saline [controls] or α-adrenergic agents (δ-yohimbine, clonidine), energymetabolism interfering compound (theniloxazine), and oxygen-partial pressure increasing agent (almitrine), in order to define the plasticity and the selective changes in individual ATPases. In rat cerebral cortex, the enzyme adaptation to four-week-treatment with δ-yohimbine or clonidine was characterized by increase in both high- and low-affinity Ca2+-ATPase activities. The action involves the enzyme form located in the synaptic plasma membranes. The enzyme adaptation to the subchronic treatments with theniloxazine or almitrine was characterized by increase in Na+, K+-ATPase or Mg2+-ATPase activities, respectively. The action involves the enzymatic forms located in the synaptic plasma membranes. Thus, the pharmacodynamic effects of the agents tested should also be related to the changes induced in the activity of some specific synaptosomal nonmitochondrial ATPases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skou, J. C. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23:394–401.

    Google Scholar 

  2. Skou, J. C. 1965. Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 45:596–617.

    Google Scholar 

  3. Grenell, R. G. 1962. Studies on schizophrenia and behavior. III-Molecular biology and psychopathology. Ann. N.Y. Acad. Sci. 96:345–352.

    Google Scholar 

  4. Albers, R. W. 1967. Biochemical aspects of active transport. Ann. Rev. Biochem. 36:727–756.

    Google Scholar 

  5. Hokin, L. E., and Dahl, J. L. 1972. The sodium-potassium adenosine-triphosphatase. Pages 267–315,in Hokin, L. E. (ed.), Metabolic Pathways, Metabolic Transport, vol. VI, Academic Press, New York.

    Google Scholar 

  6. Schwartz, A., Lindenmayer, G. E., and Allen, J. C. 1975. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharm. Rev. 27:3–134.

    Google Scholar 

  7. Skou, J. C. 1986. The sodium potassium pump. Scand. J. Clin. Lab. Invest. 46 (Suppl 180):11–23.

    Google Scholar 

  8. Paton, W. D. M., Vizi, E. S., and Zar Aboo, M. 1971. The mechanism of acetylcholine release from parasympathetic nerves. J. Physiol. (Lond.) 215:819–848.

    Google Scholar 

  9. Vizi, E. S. 1972. Stimulation by inhibition of (Na+, K+, Mg2+)-activated ATPase of acetylcholine release in cortical slices from rat brain. J. Physiol. (Lond.) 226:95–117.

    Google Scholar 

  10. Garcia, A. G., and Kirpekar, S. M. 1973. Release of noradrenaline from cat spleen by sodium deprivation. Br. J. Pharmacol. 47:729–747.

    Google Scholar 

  11. Logua, G. S., and Kometiani, Z. P. 1970. On the effect of acetylcholine on the transportable ATPase of rat brain synaptic subfractions. Bull. Acad. Sci. Georgian SSR 60:709–712.

    Google Scholar 

  12. Jariashvili, T. Y. 1975. Materials elucidating the specificity of the action of biogenic amines on the activity of transport ATPase. Bull Acad. Sci. Georgian SSR 79:701–704.

    Google Scholar 

  13. Logan, J. G., and O'Donovan, D. J. 1975. The effects of noradrenaline, 5-hydroxy-tryptamine and dopamine on synaptic membrane ATPases. J. Physiol. (Lond.) 250:47–49.

    Google Scholar 

  14. Kometiani, Z. P., Tsakadze, L. G., and Jariashvili, T. Y. 1984. Functional significance of the effects of neurotransmitters on the Na+, K+-ATPase system. J. Neurochem. 42:1246–1250.

    Google Scholar 

  15. Douglas, W. W. 1968. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34:451–474.

    Google Scholar 

  16. Lee, K. S., and Shin, B. C. 1969. Studies on the active transport of calcium in human red cells. J. Gen. Physiol. 54:713–729.

    Google Scholar 

  17. Schatzmann, J. J., and Vincenzi, F. F. 1969. Calcium movements across the membrane of human red cells. J. Physiol. (Lond.) 201:369–395.

    Google Scholar 

  18. Duncan, C. J. 1976. Properties of Ca2+-ATPase activity of mammalian synaptic membrane preparations. J. Neurochem. 27:1277–1279.

    Google Scholar 

  19. Blitz, A. L., Fine, R. E., and Toselli, P. A. 1977. Evidence that coated vesicles isolated from brain are calcium-sequestering organelles resembling sarcoplasmic reticulum. J. Cell Biol 75:135–147.

    Google Scholar 

  20. Lin, S. C. 1979. Ca2+-ATPase of nerve ending particles. Possible role in regulating Ca2+ level in cytosol. Fed. Proc. 38:376.

    Google Scholar 

  21. Lin, S. C. 1981. Ca2+-activated or Mg2+-activated ATP hydrolysis in synaptosomes from mouse brain. Fed. Proc. 40:301.

    Google Scholar 

  22. Lin, S. C., and Way, E. L. 1982. A high affinity Ca2+-ATPase in enriched nerve-ending plasma membranes. Brain. Res. 235:387–392.

    Google Scholar 

  23. Michaelis, E. K., Michaelis, M. L., Chang, H. H., and Kitos, T. E. 1983. High affinity Ca2+-stimulated Mg2+-dependent ATPase in rat brain synaptosomes, synaptic membranes, and microsomes. J. Biol. Chem. 258:6101–6108.

    Google Scholar 

  24. Sorensen, R. G., and Mahler, H. R. 1982. Localization of endogenous ATPases at the nerve terminal J. Bioenerg. Biomembr. 14:527–547.

    Google Scholar 

  25. White, T. D. 1978. Release of ATP from a synaptosomal preparation by elevated extracellular potassium and by veratridine. J. Neurochem. 30:329–336.

    Google Scholar 

  26. Trams, E. G., 1980. A proposal for the role of ecto-enzymes and adenylates in traumatic shock. J. Theor. Biol. 87:609–621.

    Google Scholar 

  27. Wyllie, M. G., and Gilbert, J. L. 1979. An investigation into the role of synaptic vesicular Mg2+-ATPase in neurotransmitter release, using benzhydryl piperazines. Arch. Inc. Pharmacodyn. Ther. 241:4–15.

    Google Scholar 

  28. Mayanil, C. S. K., Kazmai, S. M. I., and Baquer, N. Z. 1982. Na+, K+-ATPase and Mg2+-ATPase activities in different regions of rat brain during alloxan diabetes. J. Neurochem. 39:903–908.

    Google Scholar 

  29. Yamamoto, H., Harris, R. A., Loh, H. H., and Way, E. L. 1977. Effects of morphine tolerance and dependence on Mg2+-dependent ATPase activity of synaptic vesicles. Life Sci. 20:1533–1540.

    Google Scholar 

  30. Shallom, J. M., and Katyare, S. S., 1985. Altered synaptosomal ATPase activity in rat brain following prolongedin vivo treatment with nicotine. Biochem. Pharmacol. 34:3445–3449.

    Google Scholar 

  31. Swann, A. C., and Steketee J. D. 1989. Subacute noradrenergic agonist infusions in vivo inerease Na+, K+-ATPase and ouabain binding in rat cerebral, cortex. J. Neurochem. 52:1598–1604.

    Google Scholar 

  32. Roufogalis, B. D., Belleau, B. 1969. Inhibition of sodium-potassium activated brain adenosine triphosphatase (Na+-K+-ATPase) by adrenergic blocking alkylating agents. Life Sci. 8:911–918.

    Google Scholar 

  33. Schaefer, A., Unyi, G., and Pfeifer, A. K. 1972. The effects of a soluble factor and of catecholamines on the activity of adenosine triphosphatase in subcellular fractions of rat brain. Biochem. Pharmacol. 21:2289–2294.

    Google Scholar 

  34. Schaefer, A., Seregi, A., and Komlos, M. 1974. Ascorbic acid-like effect of the soluble fraction of rat brain on adenosine triphosphatases and its relation ot catecholamines and chelating agents. Biochem. Pharmacol. 23:2257–2271.

    Google Scholar 

  35. Yoshimura, K. 1975. Activation of Na−K activated ATPase in rat brain by cathecolamine. J. Biochem. 74:389–391.

    Google Scholar 

  36. Godfraind, T., Koch, M. C., and Verbeke, N. 1974. The action of EGTA on the catecholamines stimulation of rat brain Na-K-ATPase. Biochem. Pharmacol. 23:3505–3511.

    Google Scholar 

  37. Iwangoff, P., Enz, A., and Chappuis, A. 1974. Effects of adrenergic blockers on the activation of brain ATPase by noradrenaline. Experientia 30:688.

    Google Scholar 

  38. Gilbert, J. C., Wyllie, M. G., and Davison, D. V. 1975. Nerve terminal ATPase as possible trigger for neurotransmitter release. Nature 255:237–238.

    Google Scholar 

  39. Logan, J. g., and O'Donovan, D. J. 1976. The effects of ouabain and the activation of neural membrane ATPase by biogenic amines. J. Neurochem. 27:185–189.

    Google Scholar 

  40. Desaiah, D., and Ho, I. K. 1977. Kinetics of catecholamine sensitive Na+−K+ATPase activity in mouse brain synaptosomes. Biochem. Pharmacol. 26:2029–2035.

    Google Scholar 

  41. Guerrero-Munoz, F., Guerrero, M. L., and Way, E. L. 1979. Effects of morphine on calcium uptake by lysed synaptosomes. J. Pharmacol. Exp. Ther. 211:370–374.

    Google Scholar 

  42. Sawas, A. H., and Gilbert, J. C. 1981. Effects of adrenergic agonists and antagonists and of the catechol nucleus on the Na+-K+-ATPase and Mg2+-ATPase activities of synaptosomes. Biochem. Pharmacol. 30:1799–1803.

    Google Scholar 

  43. Sawas, A. H. and Gilbert, J. C. 1982. The effects of dopamine agonists and antagonists on Na+, K+-ATPase and Mg2+-ATPase activities of synaptosomes. Biochem. Pharmacol. 8:1531–1533.

    Google Scholar 

  44. Dwivedy, A. K., and Sahah, S. N. 1982. Effects of phenylalanine and its deaminated metabolites on Na+, K+-ATPase activity in synaptosomes from rat brain. Neurochem. Res. 7:717–725.

    Google Scholar 

  45. Chetty, S. C., Aldous, C. N., Rashatwar, S. S., and Desaiah, D. 1983. Effect of chlordecone on pH and temperature dependent substrate activation kinetics of rat brain synaptosomal ATPase. Biochem. Pharmacol. 21:3205–3211.

    Google Scholar 

  46. Deliconstantinos, G. 1983. Phenobarbital modulates the (Na+, K+)-stimulated ATPase and Ca2+-stimulated ATPase activities by increasing the bilayer fluidity of dog brain synaptosomal plasma membranes. Neurochem. Res. 8:1143–1152.

    Google Scholar 

  47. Ross, D. H., Shreeve, S. M., and Hamilton, M. G. 1985. Activation of central muscarinic receptors inhibit Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ transport in synaptic membranes. Brain Res. 329:39–47.

    Google Scholar 

  48. Guillaume, D., Grisar, T., and Delgado-Escueta, A. V. 1986. Phenytoin dephosphorylates the catalytic subunit of the (Na+, K+) ATPase in C57/BL mice. J. Neurochem. 47:904–911.

    Google Scholar 

  49. Ross, D. H., and Cardenas, H. L. 1987. Opiates inhibit calmodulin activation of a high-affinity in synaptic membranes. Neurochem. Res. 12:41–48.

    Google Scholar 

  50. Gandhi, V. C., and Ross, D. H. 1987. α-Adrenergic receptor regulation of Ca2+/Mg2+-ATPase in brain synaptic membranes. Neurochem. Res. 9:801–807.

    Google Scholar 

  51. Cotman, C. S., and Matthews, D. A. 1971. Synaptic plasma membranes from rat brain synaptosomes. Biochim. Biophys. Acta 249:416–423.

    Google Scholar 

  52. Gilbert, J. C., and Wyllie, M. G. 1976. Effects of anticonvulsant and convulsant drugs on the ATPase activities of synaptosomes and their components. Br. J. Pharmacol. 56:49–57.

    Google Scholar 

  53. Gurd, J. W., Jones, I. R., Mahler, H. R., and Moore, W. J. 1974. Isolation and partial characterization of rat brain synaptic plasma membranes. J. Neurochem. 22:281–290.

    Google Scholar 

  54. Sorensen, R. G., and Mahler, H. R., 1981. Calcium-stimulated adenosine triphosphatases in synaptic membranes. J. Neurochem. 37:1407–1418.

    Google Scholar 

  55. Bonting, S. L., Simon, K. A., and Hawkins, N. H. 1961. Studies on sodium-potassium-activated adenosine triphosphatase. I. Quantitative distribution in several tissues of the cat Arch. Biochem. Biophys. 95:416–423.

    Google Scholar 

  56. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  57. Toll, L. and Howard, B. D. 1978. Role of Mg2+-ATPase and a pH gradient in the storage of catecholamines in synaptic vesicles. Biochemistry 17:2517–2523.

    Google Scholar 

  58. Nagy, À., Shuster, T. A., and Rosenberg, M. D. 1983. Adenosine triphosphatase activity at the external surface of chicken brain synaptosomes. J. Neurochem. 40:226–234.

    Google Scholar 

  59. Fykse, E. M., and Fonnum, F. 1991. Transport of γ-aminobutyrate and L-glutamate into synaptic vesicles. Effect of different inhibitors on the vesicular uptake of neurotransmitters and on the Mg2+-ATPase. Biochem. J. 276:363–367.

    Google Scholar 

  60. Stahl, W. L. 1986. The Na,K-ATPase of nervous tissue. Neurochem. Int. 8:449–476.

    Google Scholar 

  61. Urayama, O., Shutt, H., and Swedaner, K. J. 1989. Identification of three isozyme proteins of the catalytic subunit of the Na,K-ATPase in rat brain. J. Biol. Chem. 264:8271–8280.

    Google Scholar 

  62. Roquebert, J., and Demichel, P. 1985. Inhibition of the alpha, and alpha2 adrenoreceptor mediated pressor response in pithed rats by raubasine, tetrahydroalostonine and akuammigine. Eur. J. Pharmacol. 106:203–205.

    Google Scholar 

  63. Demichel, P., and Roquebert, J. 1984. Effects of raubasine steieoisomers on pre-and postsynaptic alpha-adrenoreceptors in the rat vas deferens. Br. J. Pharmacol. 83:505–510.

    Google Scholar 

  64. Roquebert, J., Gomond, P., and Demichel, P. 1981. Antinoradrenergic activity of raubasine on isolated thoracic aorta and vasdeferens of rats. J. Pharmacol. 12:393–403.

    Google Scholar 

  65. Aghajanian, G. K., and Rogawski, M. A. 1983. The physiological role of alpha adrenoreceptors in the central nervous system: new concepts from single cell studies. TIPS 4:315–317.

    Google Scholar 

  66. Sebban, C., Tesolin, B., Coulomb, B., and Berthaux, P. 1989. Comparative effects of almitrine and raubasine, singly and in combination, on electroencephalographic activity in young and old rats. Exp. Gerontol. 24:11–24.

    Google Scholar 

  67. Sebban, C., Tesolin, B., and Guez, D. 1987. Electroencéphalogramme quantifié: intérêt dans l'évaluation d'une thérapeutique du viellissement cérébral. Presse Méd. 16:1154–1158.

    Google Scholar 

  68. Lin, S. C., and Way, E. L. 1982. Calcium-activated ATPases in presynaptic nerve endings. J. Neurochem. 39:1641–1651.

    Google Scholar 

  69. Anami, K., Yamamoto, Y., and Setoguchi, M. 1985. Pharmacological studies on sufoxazine (Y-8894). I-Effects on experimental amnesia in mice. Folia Pharmacol. Japon. 85:71–77.

    Google Scholar 

  70. Izumi, N., and Yasuda, H. 1985. Pharmacological studies on sufoxazine (Y-8894). II-Antianoxic effect. Folia Pharmacol. Japon. 86:323–328.

    Google Scholar 

  71. Yasuda, H., Izumi, N., Nakanishi, M., Anami, K., and Maruyama, Y. 1986. Pharmacological studies on Y-8894. IV-Ameliorative effect on cerebral energy metabolic disorder induced by KCN. Folia Pharmacol. Japon. 88:363–367.

    Google Scholar 

  72. setoguchi, M., Takehara, S., Sakamori, M., Anami, K., and Maruyama, Y. 1987. Pharmacological studies on Y-8894. VI-The effect on monoamine uptake and turnover in mouse brain. Folia Pharmacol. Japon. 90:41–49.

    Google Scholar 

  73. Usa, T., Morimoto, Y., Fukuda, T., Anami, K., Setoguchi, M., and Maruyama, Y. 1986. Pharmacological studies on Y-8894. III-Its effect on the abnormal electrocorticogram induced by destruction of internal capsule. Folia Pharmacol. Japon. 88:289–297.

    Google Scholar 

  74. Kinoshita, T., Okajima, Y., Yagyu, T., Saito, A., Nobuhara, K. Saito, N., Hashimoto, M., Saito, M., and Hatashita, Y. 1989. Quantitative pharmaco-EEG, study of teniloxazine (Y-8894). Jpn. J. Neuro-psychopharmacol. 11:383–390.

    Google Scholar 

  75. Laubie, M. 1982. Effects of almitrine bismesylate on gas exchange and ventilation in the anesthetized dog. Bull. Eur. Physiopath. Resp. 18:279–284.

    Google Scholar 

  76. Labrid, C. 1982. Current concepts on almitrine bismesylate mechanism of action. Bull. Eur. Physiopath. Resp. 18:299–306.

    Google Scholar 

  77. Laubie, M., Drouillat, M., and Schmitt, H. 1983. Nucleus tractus solitarii respiratory neurons in the chemoreceptor pathway activated by almitrine. Eur. J. Pharmacol. 93:87–93.

    Google Scholar 

  78. Laubie, M., Drouillat, M., and Schmitt, H. 1984. Ventrolaterat medullary respiratory neurons and peripheral chemoreceptor stimulation by almitrine. Eur. J. Pharmacol. 102:437–442.

    Google Scholar 

  79. Nagy, A. K., Shuster, T. A., and Delgado-Escueta, A. V. 1986. Ecto-ATPase of mammalian syanptosomes: identification and enzymatic characterization. J. Neurochem. 47:976–986.

    Google Scholar 

  80. Lewis, M. E., Patel, J., Moon Edley, S., and Marangos, P. J. 1981. Autoradiographic visualization of rat brain adenosine receptors using N6-cyclohexyl [3H]adenosine. Eur. J. Pharmacol. 73:109–110.

    Google Scholar 

  81. Goodman, R. R., and Snyder, S. H. 1982. Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine. J. Neurosci. 2:2130–2141.

    Google Scholar 

  82. Braas, K. M., Newby, A. C., Wilson, V. S., and Snyder, S. H. 1986. Adenosine-containing neurons in the brain localized by immunocytochemistry. J. Neurosci. 6:1952–1961.

    Google Scholar 

  83. Cotman, C. W., Monaghan, D. T., Ottersen, O. P., and Storm-Mathisen, J. 1987. Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci. 10:273–280.

    Google Scholar 

  84. Phillis, J. W., and Wu, P. H. 1981. The role of adenosine and its nucleotides in central synaptic transmission. Prog. Neurobiol. 16:187–239.

    Google Scholar 

  85. Snyder, S. H. 1985. Adenosine as a neuromodulator. A. Rev. Neurosci. 8:103–124.

    Google Scholar 

  86. Rothman, S. M., and Olney, J. W. 1986. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 19:105–111.

    Google Scholar 

  87. Dragunow, M., and Faull, R. L. M. 1988. Neuroprotective effects of adenosine. TIPS 9:193–194.

    Google Scholar 

  88. Robinson, J. D. 1967. Kinetic studies on a brain microsenal adenosine triphosphatase. Evidence suggesting conformational changes. Biochemistry. 6:3250–3258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benzi, G., Gorini, A., Ghigini, B. et al. Synaptosomal non-mitochondrial ATPase activities and drug treatment. Neurochem Res 18, 719–726 (1993). https://doi.org/10.1007/BF00966787

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966787

Key Words

Navigation