Skip to main content
Log in

Depolarization of brain synaptosomes activates opposing factors involved in regulating levels of cytoskeletal actin

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Depolarization of mouse brain synaptosomes elicits transmitter release and modifies factors that regulate cytoskeletal actin (C-actin) levels. We previously reported (Bernstein and Bamburg, J. Neurosci. 1985. 5:2565–2569) that depolarization causes a release of about 25% of the actin associated with the cytoskeleton of synaptosomal lysates. From our current studies we conclude that depolarization only transiently perturbs the balance in opposing factors which regulate C-actin levels in lysates. Prolonged incubation of the lysates permits the actin to reequilibrate so that no difference between C-actin levels of resting and depolarized synaptosomes is observed. Both the initial transient release of actin from the cytoskeleton and its reassociation with the cytoskeleton during prolonged incubation are calcium dependent and involve factors in both the cytoskeletal and soluble fractions. Depolarization initiates modifications that both increase and decrease the C-actin level probably through mechanisms involving calcium sensitive actin binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reichardt, L. F., and Kelly, R. B. 1983. A molecular description of nerve terminal function. Ann. Rev. Biochem. 52:871–926.

    Google Scholar 

  2. Drapeau, P., and Blaustein, M. P. 1983. Initial release of [3H]dopamine from rat striatal synaptosomes: Correlation with calcium entry. J. Neurosci. 3:703–713.

    Google Scholar 

  3. Yarom, M., Zurgil, N., and Zisapel, N. 1985. Calcium permeability changes and neurotransmitter release in cultured rat brain neurons. I. Effects of stimulation on calcium ion fluxes. J. Biol. Chem. 260:16286–16293.

    Google Scholar 

  4. Yarom, M., Zurgil, N., and Zisapel, N. 1985. Calcium permeability changes and neurotransmitter release in cultured rat brain neurons. II. Temporal analysis of neurotransmitter release. J. Biol. Chem. 260:16294–16302.

    Google Scholar 

  5. Drenckhahn, D., and Kaiser, H.-W. 1983. Evidence for the concentration of F-actin and myosin in synapses and in the plasmalemmal zone of axons. Eur. J. Cell Biol. 31:235–240.

    Google Scholar 

  6. Markham, J. A., and Fifkova, E. 1986. Actin filament organization within dendrites and dendritic spines during development. Dev. Brain Res. 27:263–269.

    Google Scholar 

  7. Stossel, T. P., Chaponnier, C., Ezzell, R. M., Hartwig, J. H., Janmey, P. A., Kwiatkowski, D. J., Lind, S. E., Smith, D. B., Southwick, F. S., Yin, H. L., and Zaner, K. S. 1985. Nonmuscle actin-binding proteins. Ann. Rev. Cell Biol. 1:353–402.

    Google Scholar 

  8. Fox, J. E. B., Boyles, J. K., Reynolds, C. C., and Phillips, D. R. 1984. Actin filament content and organization in unstimulated platelets. J. Cell Biol. 98:1985–1991.

    Google Scholar 

  9. Loftus, J. C., Choate, J., and Albrecht, R. M. 1984. Platelet activation and cytoskeletal reorganization: High voltage electron microscopic examination of intact and Triton-extracted whole mounts. J. Cell Biol. 98:2019–2025.

    Google Scholar 

  10. Wallace, P. J., Wersto, R. P., Packman, C. H., and Lichtman, M. A. 1984. Chemotactic peptide induced change in neutrophil actin conformation. J. Cell Biol. 99:1060–1065.

    Google Scholar 

  11. Pfeiffer, J. R., Seagrave, J. C., Davis, B. H., Deanin, G. G., and Oliver, J. M. 1985. Membrane and cytoskeletal changes associated with IgE-mediated serotonin release from rat basophilic leukemia cells. J. Cell Biol. 101:2145–2155.

    Google Scholar 

  12. Howard, T. H., and Oresajo, C. O. 1985. A method for quantifying F-actin in chemotactic peptide activated neutrophils: Study of the effect of tBOC peptide. Cell Motil. 5:545–547.

    Google Scholar 

  13. Check, T. R., and Burgoyne, R. D. 1986. Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells. FEBS Letters 207:110–114.

    Google Scholar 

  14. Perrin, D., and Aunis, D. 1985. Reorganization of α-fodrin induced by stimulation in secretory cells. Nature 315:589–591.

    Google Scholar 

  15. Sobue, K. S., Kanda, K., Adachi, J., and Kakiuchi, S. 1983. Calmodulin-binding proteins that interact with actin filaments in a Ca2+-dependent flip-flop manner: Survey in brain and secretory tissues. Proc. Natl. Acad. Sci. U. S. A. 80:6868–6871.

    Google Scholar 

  16. Baines, A. J., and Bennett, V. 1985. Synapsin I is a spectrin binding protein immunologically related to erythrocyte protein 4.1. Nature 315:410–413.

    Google Scholar 

  17. Bennett, V., Baines, A. J., and Davis, J. Q. 1985. Ankyrin and synapsin: Spectrin binding proteins associated with brain membranes. J. Cell Biochem. 29:157–169.

    Google Scholar 

  18. Nestler, E. J., and Greengard, P. 1980. Dopamine and depolarizing agents regulate the state of phosphorylation of protein I in the mammalian superior cervical sympathetic ganglion. Proc. Natl. Acad. Sci. U.S.A. 77:7479–7483.

    Google Scholar 

  19. Schiebler, W., Jahn, R., Doucet, J.-P., Rothlein, J., and Greengard, P. 1986. Characterization of synapsin I binding to small synaptic vesicles. J. Biol. Chem. 261:8383–8390.

    Google Scholar 

  20. Goldenring, J. R., Lasher, R. S., Vallano, M. L., Ueda, T., Naito, S., Sternberger, N. H., Sternberger, L. A., and DeLorenzo, R. J. 1986. Association of synapsin I with neuronal cytoskeleton. J. Biol. Chem. 261:8495–8504.

    Google Scholar 

  21. Bernstein, B. W., and Bamburg, J. R. 1985. Reorganization of actin in depolarized synaptosomes. J. Neurosci. 5:2565–2569.

    Google Scholar 

  22. Hajos, F. 1975. An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 93:485–489.

    Google Scholar 

  23. Heacock, C. S., and Bamburg, J. R. 1983. The quantitation of G- and F-actin in cultured cells. Anal. Biochem. 135:22–36.

    Google Scholar 

  24. Spudich, J. A., and Watt, S. 1971. The regulation of rabbit skeletal muscle contraction. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246:4866–4871.

    Google Scholar 

  25. Heacock, C. S., Bernstein, B. W., Duhaiman, A. S., Amorese, D. A., and Bamburg, J. R. 1982. In vitro labeling of proteins by reductive methylation: Application to proteins involved in supramolecular structures. J. Cell Biochem. 19:77–91.

    Google Scholar 

  26. Tanford, C. 1980. The hydrophobic effect. Wiley and Sons, New York.

    Google Scholar 

  27. Hidaka, H., Sasaki, Y., Tanaka, T., Endo, T., Ohno, S., Fujii, Y., and Nagata, T. 1981. N-(6-aminohexyl)-5-chlorol-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 78:4354–4357.

    Google Scholar 

  28. Schwartz, M. A., and Luna, E. J. 1986. Binding and assembly of actin filaments by plasma membranes from Dictyostelium discoideum. J. Cell Biol. 102:2067–2075.

    Google Scholar 

  29. Koffer, A., and Daridan, M. 1985. Actin-regulating activities in cultured BHK cells. J. Cell Sci. 75:239–257.

    Google Scholar 

  30. Koffer, A., Gratzer, W. B., Clarke, G. D., and Hales, A. 1983. Phase equilibria of cytoplasmic actin of cultured epithelial (BHK) cells. J. Cell Sci. 61:191–218.

    Google Scholar 

  31. Baudry, M., Bundman, M., Smith, E., and Lynch, G. 1981. Micromolar calcium stimulates proteolytic activity and glutamate receptor binding in rat synaptic membranes. Science. 212:937–938.

    Google Scholar 

  32. Robinson, P. J., and Dunkley, P. R. 1985. Depolarisation dependent phosphorylation and dephosphorylation in rat cortical synaptosomes is modulated by calcium. J. Neuro chem. 44:338–348.

    Google Scholar 

  33. LeVine III, H., Sahyoun, N. E., and Cuatrecasas, P. 1985. Calmodulin binding to the cytoskeletal neuronal calmodulin-dependent protein kinase is regulated by autophosphorylation. Proc. Natl. Acad. Sci. U.S.A. 82:287–291.

    Google Scholar 

  34. Miller, S. G., and Kennedy, M. B. 1986. Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: A Ca2+-triggered molecular switch. Cell 44:861–870.

    Google Scholar 

  35. Petrucci, T. C., Thomas, C., and Bray, D. 1983. Isolation of a Ca2+ dependent actin-fragmenting protein from brain, spinal cord, and cultured neurons. J. Neurochem. 40:1507–1516.

    Google Scholar 

  36. Bryan, J., and Coluccio, L. M. 1985. Kinetic analysis of F-actin depolymerization in the presence of platelet gelsolin and gelsolin-actin complexes. J. Cell Biol. 101:1236–1244.

    Google Scholar 

  37. Yin, Y. L., Hartwig, J. H., Maruyama, K., and Stossel, T. P. 1981. Ca2+ control of actin filament length (effects of macrophage gelsolin on actin polymerization). J. Biol. Chem. 256:9693–9697.

    Google Scholar 

  38. Duhaiman, A. S., and Bamburg, J. R. 1984. Isolation of α-actinin. Its characterization and a comparison of its properties with those of muscle α-actinins. Biochemistry 23:1600–1608.

    Google Scholar 

  39. Blaedel, W. J., and Meloche, V. W. 1963. Elementary Quantitative Analysis. Pages 625–628, Harper and Row, Publishers, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. E. M. Shooter and Dr. S. Varon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernstein, B.W., Bamburg, J.R. Depolarization of brain synaptosomes activates opposing factors involved in regulating levels of cytoskeletal actin. Neurochem Res 12, 929–935 (1987). https://doi.org/10.1007/BF00966315

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966315

Key Words

Navigation