Skip to main content
Log in

Chloride dependence of the K+-stimulated release of taurine from synaptosomes

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Exposure of a crude synaptosomal fraction to K+ concentrations ranging from 25 to 100 mM evokes the release of [3H]taurine and [3H]GABA. These high concentrations of K+ induce, besides depolarization, a marked synaptosomal swelling, which is prevented by replacing chloride in the solutions with the largely impermeant anion gluconate. The depolarizing effect of K+ is unaffected by omission of chloride. The K+-evoked release of taurine seems related to K+-induced changes in synaptosomal volume rather than to a depolarizing effect, since it is totally calcium-independent but is abolished by reducing chloride and by making solutions hypertonic with mannitol. The release of [3H]GABA, in contrast is unaffected in chloride-free or hypertonic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oja, S. S., and Kontro, P. 1983. Taurine. Pages 501–533, A. Lajtha. Handbook of Neurochemistry, vol. 3, 2nd. ed. Plenum Press: New York.

    Google Scholar 

  2. Huxtable, R. J. 1989. Taurine in the central nervous system and the mammalian actions of taurine. Progr. Neurobiol. 32:472–533.

    Google Scholar 

  3. Placheta, P., Singer, E., Sieghart, W. and Karobath, M. 1979. Properties of3H-taurine release from crude, synaptosomal fractions of rat cerebral cortex. Neurochem. Res. 4:703–711.

    PubMed  Google Scholar 

  4. Hanretta, A. T. and Lombardini, J. B. 1987. Is taurine a hypothalamic neurotransmitter?: a model of the differential uptake and compartmentalization of taurine by neuronal and glial cell particles from the rat hypothalamus. Brain Res. 12:167–201.

    Google Scholar 

  5. Oja, S. S. and Kontro, P. 1987. Cation effects on taurine release from brain slices: Comparison to GABA. J. Neurosci. Res. 17:302–311.

    PubMed  Google Scholar 

  6. Whittaker, V. P. and Barker, L. A. 1972. The subcellular fractionation of brain tissue with special reference to the preparation of synaptosomes and their component organelles. Pages 2–52,in Fried R. (ed.) Methods of Neurochemistry, Marcel Dekker, New York.

    Google Scholar 

  7. Hajós, F. 1975. An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 93:485–489.

    PubMed  Google Scholar 

  8. Friedman, J. E., Lelkes, P. J., Lavie, Rosenheck, K., Schneeweiss, F., and Schneider, A. S. 1985. Membrane potential and catecholamine secretion by bovine adrenal chromaffin cells: use of tetraphenylphosphonium distribution and carbocyanine dye fluorescence. J. Neurochem. 44:1391–1402.

    PubMed  Google Scholar 

  9. Keen, P., and White, T. D. 1970. A light-scattering technique for the study of the permeability of rat brain synaptosomes in vitro. J. Neurochem. 14:565–571.

    Google Scholar 

  10. Kontro, P. 1979. Components of taurine efflux in rat brain synaptosomes. Neuroscience. 4:1745–1749.

    PubMed  Google Scholar 

  11. Hardy, J. A., Boakes, R. J., Thomas, D. J. E. Kindd, A. M., Edwardson, J. A., Virmani, M., Turner, J., and Dodd, P. R. 1984. Release of aspartate and glutamate caused by chloride reduction in synaptosomal incubation media. J. Neurochem. 42:875–877.

    PubMed  Google Scholar 

  12. Naalsund, L. U., and Fonnum, F. 1986. Differences in anionic dependence of the synaptic effllux of D-aspartic acid and aminobutyric acid. J. Neurochem. 47:687–690.

    PubMed  Google Scholar 

  13. Pasantes-Morales, H., Dominguez, I., Montenegro, J., and Morán, J. 1988. A chloride-dependent component of the release of labeled GABA and taurine from the chick retina. Brain Res. 459:120–130.

    PubMed  Google Scholar 

  14. Diliberto, P. A., Jeffs, R. A., and Cubeddu, L. X. 1989 Effects of low extracellular chloride on dopamine release and the dopamine transporter. J. Pharm. Exp. Ther. 248:644–653.

    Google Scholar 

  15. Hodkin, A. L. and Horowicz, P. 1960. Potassium contractions in single muscle fibres. J. Physiol. (Lond.) 153:386–403.

    Google Scholar 

  16. Nishiyama, A., and Petersen, O. L. 1975. Pancreatic acinar cells: ionic dependence of acetylcholine-induced membrane potential and resistance change. J. Physiol. (Lond.). 224:431–465.

    Google Scholar 

  17. Turner, J. D., Boakes, R. J., Hardy, J. A., and Virmani, M. A. 1987. Efflux of putative transmitters from superfused rat brain slices induced by low chloride ion concentrations. J. Neurochem. 48:1060–1068.

    PubMed  Google Scholar 

  18. Domínguez, L., Montenegro, J., and Pasantes-Morales, H. 1989. A volume-dependent, chloride-sensitive component of taurine release stimulated by potassium from retina. J. Neurosci. Res. 22:356–361.

    PubMed  Google Scholar 

  19. Pasantes-Morales, H., and Schousboe, A. 1989. Release of taurine from astrocytes during potassium-evoked swelling. Glia 2:45–50.

    PubMed  Google Scholar 

  20. Bourke, R. S. 1969. Studies of the development and subsequent reduction of swelling of mammalian cerebral cortex under isosmotic conditionsin vitro. Exp. Brain Res. 8:232–248.

    PubMed  Google Scholar 

  21. Bourke, R. S., and Tower, D. B. 1966. Fluid compartmentation and electrolytes of cat cerebral cortexin vitro I. Swelling and solute distribution in mature cerebral cortex. J. Neurochem. 13:1071–1097.

    PubMed  Google Scholar 

  22. Bourke, R. S., and Kimelberg, H. K. 1975. The effect of HCO3 on the swelling and ion uptake of monkey cerebral cortex under conditions of raised extracellular potassium. J. Neurochem. 25:323–328.

    PubMed  Google Scholar 

  23. Lipton, P. 1973. Effects of membrane depolarization on light scattering by cerebral cortical slices. J. Physiol. (Lond.) 231:365–383.

    Google Scholar 

  24. Kamino, K., Inouye, K., and Inouye, A. 1973. Potassium ioninduced swelling of nerve-ending particles by light-scattering measurement. Biochim. Biophys. Acta 330:39–52.

    PubMed  Google Scholar 

  25. Walz, W. 1986. Swelling and potassium uptake in cultured astrocytes. Can. J. Physiol. Pharmacol. 65:1051–1057.

    Google Scholar 

  26. Van Harreveld, A., and Khattab, F. 1967. Changes in cortical extracellular space during spreading depression investigated with the electron microscope. J. Neurophysiol. 30:911–929.

    PubMed  Google Scholar 

  27. Trubatch, J., Loud, A., and Van Harreveld. 1977. Quantitative stereological evaluation of KCl-induced ultrastructural changes in frog brain. Neuroscience 2:963–974.

    Google Scholar 

  28. Soderfeldt, B., Kalimo, H., Olsson., Y., and Siesjo, B. 1981. Pathogenesis of brain lesions caused by experimental epilepsy, Light and electron microscopic, changes in the rat cerebral cortex following bicuculline-induced status epilepticus. Acta Neuropathol. 54:219–321.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez Olea, R., Pasantes-Morales, H. Chloride dependence of the K+-stimulated release of taurine from synaptosomes. Neurochem Res 15, 535–540 (1990). https://doi.org/10.1007/BF00966213

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966213

Key Words

Navigation