Skip to main content
Log in

Inactivation of depolarization-induced calcium uptake in rat brain synaptosomes

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The inactivation of depolarization-induced Ca uptake into rat brain synaptosomes was demonstrated biochemically by comparing45Ca fluxes after various intervals of predepolarization achieved by abruptly increasing {K+}0. The chemical composition of the medium was maintained throughout the predepolarization and Ca uptake steps. Under these conditions, inactivation was dependent on depolarization, i.e., basal unstimulated Ca uptake in the presence of 5 mM {K+}0 did not inactivate. Inactivation of stimulated Ca uptake was dependent on the predepolarization interval, moderately dependent on {Ca}0 and relatively independent of membrane potential, i.e., {K+}0 and ions such as Ni2+ and Co2+ that blocked Ca uptake. Both cinnarizine and lidoflazine blocked stimulated Ca uptake in a concentration-dependent manner without affecting the % inactivation. Although the amount of stimulated uptake increased greatly between 10 and 30°C, the % inactivation was unaffected by temperature. These findings suggest that inactivation of the presynaptic Ca uptake is an intrinsic property of the channel independent of calcium uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubin, R. P. 1972. The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev. 22:389–428.

    Google Scholar 

  2. Llinas, R., Sugimori, M., andSimon, S. M. 1982. Transmission by presynaptic spike-like depolarization in the squid giant synapse. Proc. Natl. Acad. Sci. 79:2415–2419.

    PubMed  Google Scholar 

  3. Blaustein, M. P. 1975. Effects of potassium, veratridine and scorpion venom or calcium accumulation and transmitter release by nerve endings in vitro. J. Physiol. (Lon.) 247:617–655.

    Google Scholar 

  4. Nachshen, D. A., andBlaustein, M. P. 1980. Some properties of potassium-stimulated calcium influx in presynaptic nerve endings. J. Gen. Physiol 76:709–728.

    PubMed  Google Scholar 

  5. Meyer, E. M., andCooper, J. R. 1983. Cobalt ions dissociate between calcium uptake through voltage-dependent sodium and calcium channels in synaptosomes. Brain Res. 265:173–176.

    PubMed  Google Scholar 

  6. Hoss, W., andFormaniak, M. 1983. Effects of opiates on synaptosomal calmodulin and calcium uptake. Neurochem. Res. 8:219–229.

    PubMed  Google Scholar 

  7. Hoss, W., andFormaniak, M. 1984. Calcium channel activity in rat brain synaptosomes: Effects of neuroleptics and other factors regulating phosphorylation and transmitter release. Neurochem. Res. 9:109–120.

    PubMed  Google Scholar 

  8. Aronstam, R. S., andHoss, W. 1985. Tricylic antidepressants inhibit depolarization-induced uptake of calcium by synaptosomes from rat brain. Biochem. Pharmacol. 34:902–904.

    PubMed  Google Scholar 

  9. Bagust, J., andKerkut, G. A. 1980. The use of transition elements manganese, colbalt and nickel as synaptic blocking agents on isolated, hemisected mouse spinal cord. Brain Res. 182:474–477.

    PubMed  Google Scholar 

  10. Fleckenstein, A. 1981. Fundamental actions of calcium antagonists on myocardial and cardiac pacemaker cell membranes Pages 59–81,in Weiss, G. B. (ed.). New Perspectives on Calcium Antagonists, American Physiological Society, Bethesda, MD.

    Google Scholar 

  11. Vanhoutte, P. M. 1981. Differential effects of calcium entry blockers on vascular smooth muscle Pages 109–121,in Weiss, G. B. (ed.) New Perspectives on Calcium Antagonists, American Physiological Society, Bethesda, MD.

    Google Scholar 

  12. Gould, R. J., Murphy, K. M. M., andSnyder, S. H. 1982. [3H]Nitrendipine-labeled calcium channels discriminate inorganic calcium agonists and antagonists. Proc. Natl. Acad. Sci. U.S.A. 79:3656–3660.

    PubMed  Google Scholar 

  13. Murphy, K. M. M., Gould, R. J., Largent, B. L., andSnyder, S. H. 1983. A unitary mechanism of calcium antagonist drug action. Proc. Natl. Acad. Sci. U.S.A. 80:860–864.

    PubMed  Google Scholar 

  14. Lux, H. D., andBrown, A. M. 1984. Single channel studies on inactivation of calcium currents. Science 225:432–434.

    PubMed  Google Scholar 

  15. Kostyuk, P. G., Krishtal, D. A., andDoroshenko, P. A. 1974. Calcium currents in snail neurons I. Identification of calcium current. Plugers Arch. 348:83–93.

    Google Scholar 

  16. Llinas, R., andSugimori, M. 1980. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. (Lon.) 305:197–213.

    Google Scholar 

  17. Armstrong, C. M., andMatteson, D. R. 1985. Two distinct populations of calcium channels in a clonal line of pituitary cells. Science 227:65–67.

    PubMed  Google Scholar 

  18. See for exampleAkaike, N., Brown, A. M., Nishi, K., andTsuda, Y. 1981. Actions of verapamil, diltiazem and other divalent cations on the calcium-current ofHelix neurones. Br. J. Pharmacol. 74:87–95.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoss, W., Labkovsky, B. Inactivation of depolarization-induced calcium uptake in rat brain synaptosomes. Neurochem Res 11, 1361–1372 (1986). https://doi.org/10.1007/BF00966129

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966129

Keywords

Navigation