Skip to main content
Log in

Autoradiographic assessment of the effects of N-methyl-d-aspartate (NMDA) receptor antagonists in vivo

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., and Woolsey, T. A. 1972. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res. 37:21–51.

    Google Scholar 

  2. Freygang, W. H. Jr., and Sokoloff, L. 1958. Quantitative measurement of regional circulation in the central nervous system by the use of radioactive inert gas. Adv. Biol. Med. Physics, 6:263–279.

    Google Scholar 

  3. Reivich, M., Jehle, J., Sokoloff, L., and Kety, S. S. 1969. Measurement of regional cerebral blood flow with antipyrine-14C in awake cats. J. Appl. Physiol. 27:296–300.

    Google Scholar 

  4. Eckman, W. W., Phair, R. D., Fenstermacher, J. D., Patlak, C. S., Kennedy, C., and Sokoloff, L. 1975. Permeability limitation in estimation of local brain blood flow with [14C]antipyrine. Am. J. Physiol. 229:215–221.

    Google Scholar 

  5. Altman, J. 1969. DNA metabolism and cell proliferation. Pages 132–182in Lajtha, A. (ed.) Handbook of Neurochemistry Vol. 2, Plenum, New York.

    Google Scholar 

  6. Kennedy, C., Des Rosiers, M. H., Jehle, J. W., Reivich, M., Sharp, F., and Sokoloff, L. 1975. Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with [14C]deoxyglucose. Science, 187:850–853.

    Google Scholar 

  7. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosier, Patlak, M. H., Pettigrew, C. S., Sakurada, K. D., and Shinohara, M. 1977. The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:997–916.

    Google Scholar 

  8. Sakurada, O., Kennedy, C., Jehle, J., Brown, J. D., Carbin, G. L., and Sokoloff, L. 1978. Measurement of local cerebral blood flow with iodo[14C]antipyrine. Am. J. Physiol. 3:H59-H66.

    Google Scholar 

  9. Smith, C. B., Crane, A. M., Kadekaro, M., Agranoff, B. W., and Sokoloff, L. 1984. Stimulation of protein synthesis and glucose utilization in the hypoglossal nucleus induced by axotomy. J. Neurosci. 10:2489–2496.

    Google Scholar 

  10. Blasberg, R. G., Fenstermacher, J. D., and Patlak, C. S. 1983. Transport of α-aminoisobutyric acid across brain capillary and cellular membranes. J. Cereb. Blood Flow Metabol. 3:8–32.

    Google Scholar 

  11. Kobatake, K., Sako, K., Izawa, M., Yamamoto, Y. L., and Hakim, A. M. 1984. Autoradiographic determination of brain pH following middle cerebral artery occlusion in the rat. Stroke 15:540–547.

    Google Scholar 

  12. Frey, K. A., Hiwcha, R. D., Ehrenkaufer, R. L. E., and Agranoff, B. W. 1985. Quantitative in vivo receptor binding III: tracer kinetic modeling of muscarinic cholinergic receptor binding. Proc. Natl. Acad. Sci. USA 82:6711–6715.

    Google Scholar 

  13. Palacios, J. M., Niehoff, D. L., and Kuhar, M. J. 1981. Receptor autoradiography with tritium-sensitive film: potential for computerized densitometry. Neurosci. Lett. 25:101–105.

    Google Scholar 

  14. Choi, D. 1990. Methods for antagonizing glutamate neurotoxicity. Cereb. and Brain Metabol. Rev. 2:105–147.

    Google Scholar 

  15. Jørgensen, M. B., and Diemer, N. H. 1982. Selective neuron loss after cerebral ischemia in the rat: Possible role of transmitter glutamate. Acta Neurol. Scandinav. 66:536–546.

    Google Scholar 

  16. Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S. 1984. Blockade of N-Methyl-d-Aspartate Receptors May Protect against Ischaemic Damage in the Brain. Science 226:850–852.

    Google Scholar 

  17. Foster, A. C., and Fagg, G. E. 1987. Taking apart NMDA receptors. Nature 329:395–396.

    Google Scholar 

  18. Lehmann, J., Hutchison, A. J., McPherson, S. E., Mondadori, C., Schmutz, M., Sinton, C. M., Tsai, C., Murphy, D. E., Steel, D. J., Williams, M., Cheyney, D. L., and Wood, P. L. 1988. CGS 19755, a selective and competitive N-methyl-d-aspartatetype excitatory amino acid receptor antagonist. J. Pharmacol. Exp. Ther. 246:65–76.

    Google Scholar 

  19. Aebischer, B., Frey, P., Haerter, H.-P., Herrling, P. L., and Muller, W., Olverman, H., and Watkins, J. 1989. Synthesis and NMDA Antagonist Properties of the Enantiomers of 4-(3-Phosphonopropyl)-piperazine-2-carboxylic Acid (CPP) and of the Unsaturated Analogue (E)-4-(3-Phosphonoprop-2-enyl)piperazine-2-carboxylic Acid (CPP-ene). Helvetica Chimica Acta 72:1043–1051.

    Google Scholar 

  20. Kemp, J. A., Foster, A. C., and Wong, E. H. F. 1987. Noncompetitive antagonists of excitatory amino acid receptors. TINS 10:294–298.

    Google Scholar 

  21. Kemp, J. A., Foster, A. C., Leeson, P. D., Priestly, T., Tridgett, R., and Iversen, L. L. 1988. 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-d-aspartate receptor complex. Proc. Nat. Acad. Sci. USA 85:6547–6550.

    Google Scholar 

  22. Singh, L., Donald, A. E., Foster, A. C., Hutson, P. H., Iversen, L. L., Iversen, S. D., Kemp, J. A., Leeson, P. D., Marshall, G. R., Oles, R. J., Priestly, T., Thorn, L., Tricklebank, M. D., Vass, C. A., and Williams, B. J. 1990. Enantiomers of HA-966 (3-amino-1-hydroxypyrrolid-2-one) exhibit distinct central nervous system effects: (+)-HA-966 is a selective glycine/N-methyl-d-aspartate receptor antagonist, but (−)-HA-966 is a potent γ-butyrolactone-like sedative. Proc. Nat. Acad. Sci. USA 87:347–351.

    Google Scholar 

  23. Carter, C., Rivy, J. P., and Scatton, B. 1989. Ifenprodil and SL 820715 are antagonists at the polyamine site of the N-methyl-d-aspartate (NMDA) receptor. Eur. J. Pharmacol. 164:611–612.

    Google Scholar 

  24. McCulloch, J., Bullock, M., and Teasdale, G. M. 1991. Excitatory Amino Acid Antagonists: Opportunities for the Treatment of Ischaemic Brain Damage in Man, pages 287–326,in Meldrum, B. S. (ed) Excitatory Amino Acid Antagonists, Blackwell.

  25. Ozyurt, E., Graham, D. I., Woodruff, G. N., and McCulloch, J. 1988. Protective effect of the glutamate antagonist MK-801 in focal cerebral ischemia in the cat. J. Cereb. Blood Flow Metabol. 8:138–143.

    Google Scholar 

  26. Park, C. K., Nehls, D. G., Graham, D. I., Teasdale, G. M., and McCulloch, J. 1988. Focal cerebral ischaemia in the cat: treatment with the glutamate antagonist MK-801 after induction of ischaemia. J. Cereb. Blood Flow Metabol. 8:757–762.

    Google Scholar 

  27. Gotti, B., Duverger, D., Bertin, J., Carter, C., Dupont, R., Frost, J., Gaudilliere, B., MacKenzie, E. T., Rousseau, J., Scatton, B., and Wick, A. 1988. Ifenprodil and SL 82.0715 as cerebral antiischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia. J. Pharmacol. Expt. Ther. 247:1211–1221.

    Google Scholar 

  28. Bullock, R., Graham, D. I., Chen, M-H., Lowe, D., and McCulloch, J. 1990. Focal cerebral ischaemia in the cat: pretreatment with a competitive NMDA receptor antagonist,d-CPP-ene, J. Cereb. Blood Flow Metabol. 10:668–674.

    Google Scholar 

  29. Chen, M., Bullock, R., Graham, D. I., Frey, P., Lowe, D., and McCulloch, J. 1991. Evaluation of a competitive NMDA antagonistd-CPP-ene) in feline focal cerebral ischaemia. Ann. Neurol. (in press).

  30. Park, C. K., Nehls, D. G., Graham, D. I., Teasdale, G. M., and McCulloch, J. 1988. The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann. Neurol. 24:543–551.

    Google Scholar 

  31. Dirnagl, U., Tanabe, J., and Pulsinelli, W. 1990. Pre-and posttreatment with MK-801 but not pretreatment alone reduces neocortical damage after focal cerebral ischemia in the rat. Brain Res. 527:62–68.

    Google Scholar 

  32. Simon, R., and Shiraishi, K. 1990. N-Methyl-d-Aspartate Antagonist Reduces Stroke Size and Regional Glucose Metabolism. Ann. Neurol. 27:606–611.

    Google Scholar 

  33. Steinberg, G. K., Saleh, J., Kunis, D., DeLaPaz, R., and Zarnegar, S. R. 1989. Protective Effect of N-Methyl-d-Aspartate Antagonists After Focal Cerebral Ischemia in Rabbits. Stroke 20:1247–1252.

    Google Scholar 

  34. Gotti, B., Benavides, J., MacKenzie, E. T., and Scatton, B. 1990. The pharmacotherapy of focal cortical ischaemia in the mouse. Brain Res. 522:290–307.

    Google Scholar 

  35. Pardridge, W. M., Triguero, D., Yang, J., and Cancilla, P. A. 1990. Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier. J. Pharmacol. Exp. Ther. 253:884–891.

    Google Scholar 

  36. Foster, A. C., and Fagg, G. E. 1984. Acidic Amino Acid Binding Sites in Mammalian Neuronal Membranes: Their Characteristics and Relationship to Synaptic Receptors. Brain Res. Rev. 7:103–164.

    Google Scholar 

  37. Watkins, J. C., and Evans, R. H. 1981. Excitatory Amino Acid Transmitters. Ann. Rev. Pharmacol. Toxicol. 21:165–204.

    Google Scholar 

  38. McCulloch, J. 1982. Mapping functional alterations in the CNS with [14C] deoxyglucose. In: Handbook of Psychopharmacology, (Iversen, L. L., Iversen, S., and Snyder, S. H., eds.), Vol. 15, Plenum Publishing Corporation, pp. 321–410.

  39. Meibach, R. C., Glick, S. D., Cox, R., and Maayani, S. 1979. Localisation of phencyclidine-induced changes in brain energy metabolism. Nature 282:625–625.

    Google Scholar 

  40. Weissman, A. D., Dam, M., and London, E. D. 1987. Alterations in local cerebral glucose utilization induced by phencyclidine. Brain Res. 435:29–40.

    Google Scholar 

  41. Crosby, G., Crane, A. M., and Sokoloff, L. 1982. Local Changes in Cerebral Glucose Utilization during Ketamine Anesthesia. Anesthesiology, 56:437–443.

    Google Scholar 

  42. Nehls, D. G., Kurumaji, A., Park, C. K., and McCulloch, J. 1988. Differential effects of competitive and non-competitive N-methyl-D-aspartate antagonists on glucose use in the limbic system. Neurosci. Lett. 91:204–210.

    Google Scholar 

  43. Kurumaji, A., Nehls, D. G., Park, C. K., and McCulloch, J. 1989. Effects of NMDA antagonists, MK-801 and CPP, upon local cerebral glucose use. Brain Res. 496:268–284.

    Google Scholar 

  44. Tamminga, C. A., Tanimoto, K., Kuo, S., Chase, T. N., Contreras, P. C., Rice, K. C., Jackson, A. E., and O'Donoghue, T. L. 1987. PCP-induced alterations in cerebral glucose utilization in rat brain: Blockade by Metaphit, a PCP-receptor-acylating agent. Synapse 1:497–504.

    Google Scholar 

  45. Ascher, P., and Nowak, L. 1987. Electrophysiological studies of NMDA receptors. TINS, 10:284–288.

    Google Scholar 

  46. Jarvis, M. F., Murphy, D. E., and Williams, M. 1987. Quantitative autoradiographic localization of NMDA receptors in rat brain using [3H]CPP: Comparison with [3H]TCP binding sites. Eur. J. Pharmacol. 141:149–152.

    Google Scholar 

  47. Bowery, N. G., Wong, W. H. F., and Hudson, A. L. 1988. Quantitative autoradiography of [3H]-MK-801 binding sites in mammalian brain. Br. J. Pharmacol. 93:944–954.

    Google Scholar 

  48. Bayer, S. A. 1985. Hippocampal region. In: G. Paxinos (Ed.), The Rat Nervous System, Vol. 1, Academic Press, Australia. pp. 335–352.

    Google Scholar 

  49. White, W. F., Nadler, J. V., Hamberger, A., and Cotman, C. W. 1977. Glutamate as transmitter of hippocampal perforant path. Nature 270:356–357.

    Google Scholar 

  50. Monaghan, D. T., and Cotman, C. W. 1985. Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate binding sites in rat brain. J. Neurosci. 5:2909–2919.

    Google Scholar 

  51. Maragos, W. F., Penney, J. B., and Young, A. B. 1988. Anatomic correlation of NMDA and3H-TCP-labeled receptors in rat brain. J. Neurosci. 8:493–501.

    Google Scholar 

  52. Kurumaji, A., and McCulloch, J. 1990. Effects of MK-801 upon local cerebral glucose utilisation in conscious rats following unilateral lesion of caudal entorhinal cortex. Brain Res. 531:72–82.

    Google Scholar 

  53. Kurumaji, A., and McCulloch, J. 1989. Effects of MK-801 upon Local Cerebral Glucose Utilisation in Conscious Rats and in Rats Anaesthetised with Halothane. J Cereb Blood Flow Metab. 9:786–794.

    Google Scholar 

  54. Wong, E. H. F., and Nielsen, M. 1989. The N-methyl-D-aspartate receptor channel complex and the σ site have different target sizes. Eur. J. Pharmacol. 172:493–496.

    Google Scholar 

  55. Snell, L. D., Yi, S.-J., and Johnson, K. M. 1988. Comparison of the effects of MK-801 and phencyclidine on catecholamine uptake and NMDA-induced norepinephrine release. Eur. J. Pharmacol. 145:223–226.

    Google Scholar 

  56. McCulloch, J., Savaki, H. E., McCulloch, M. C., and Sokoloff, L. 1979. Specific distribution of metabolic alterations in cerebral cortex following apomorphine administration. Nature, 282:303–305.

    Google Scholar 

  57. McCulloch, J., Savaki, H. E., McCulloch, M. C., and Sokoloff, L. 1980. Retina-dependent activation by apomorphine of metabolic activity in the superficial layer of the superior colliculus. Science 207:313–315.

    Google Scholar 

  58. McCulloch, J., Savaki, H. E., McCulloch, M. C., Jehle, J., and Sokoloff, L. 1982. The distribution of alterations in energy metabolism in the rat brain produced by apomorphine. Brain Res. 243:67–80.

    Google Scholar 

  59. Kozlowski, M. R. 1986. Effects of σ agonist compounds on local cerebral glucose utilization: relationship to psychotomimetic properties. Brain Res. 376:190–193.

    Google Scholar 

  60. Collins, R. C. 1978. Kindling of Neuroanatomic Pathways During Recurrent Focal Penicillin Seizures. Brain Res. 150:503–517.

    Google Scholar 

  61. Ben-Ari, Y., Tremblay, E., Riche, D., Ghilini, G., and Naquet, R. 1981. Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 6:1361–1391.

    Google Scholar 

  62. Clifford, D. B., Olney, J. W., Maniotis, A., Collins, R. C., and Zorumski, C. F. 1987. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience 23:953–968.

    Google Scholar 

  63. Collins, R. C., and Olney, J. W. 1982. Focal Cortical Seizures Cause Distant Thalamic Lesions. Science 218:177–179.

    Google Scholar 

  64. Olney, J. W., Labruyere, J., and Price, M. T. 1989. Pathological Changes Induced in Cerebrocortical Neurons by Phencyclidine and Related Drugs. Science 244:1360–1362.

    Google Scholar 

  65. Allen, J. L., and Iversen, L. L. 1990. Phencyclidine, Dizocilpine and Cerebrocortical Neurons. Science 247:221.

    Google Scholar 

  66. Labruyere, J., Price, M. T., and Olney, J. W. 1989. NMDA antagonists induce pathomorphological changes in cerebrocortical neurons. Neurosci. Abs. 15:761.

    Google Scholar 

  67. Kurumaji, A., Ikeda, M., Dewar, D., and McCulloch, J. 1991. The effect of chronic administrations of MK-801 upon local cerebral glucose use and ligand binding to the NMDA receptor complex Brain Res (in press).

  68. Olney, J. W., Labruyere, J., Wang, G. J., and Price, M. T. 1990. Anticholinergics prevent neurotoxic side effects of NMDA antagonists. Soc. Neurosci. Abs. 1b:1122.

    Google Scholar 

  69. Clineschmidt, B. V., Martin, G. E., Bunting, P. R., and Papp, N. L. 1982. Central Sympathomimetic Activity of (+)-5-Methyl-10, 11-imine (MK-801), A Substance with Potent Anticonvulsant, Central Sympathomimetic, and Apparent Anxiolytic Properties. Drug Development Res. 2:135–145.

    Google Scholar 

  70. Willetts, J., Balster, R. L., and Leander, J. D. 1990. The behavioral pharmacology of NMDA receptor antagonists. Trends in Pharm. Sci. 11:423.

    Google Scholar 

  71. Tricklebank, M. D., Singh, L., Oles, R. J., Preston, C., and Iversen, S. D. 1989. The behavioural effects of MK-801: a comparison with antagonists acting non-competitively and competitively at the NMDA receptor. Eur. J. Pharmacol. 167:127–135.

    Google Scholar 

  72. Rao, T. S., Kim, H. S., Lehmann, J., Martin, L. L., and Wood, P. L. 1990. Selective activation of dopaminergic pathways in the mesocortex by compounds that act at the phencyclidine (PCP) binding site: tentative evidence for PCP recognition sites not coupled to N-methyl-D-aspartate (NMDA) receptors. Neuropharmacol. 29:225–230.

    Google Scholar 

  73. Deutch, A. Y., Tam, S.-Y., Freeman, A. S., Bowers, M. B., Jr., and Roth, R. H. 1987. Mesolimbic and mesocortical dopamine activation induced by phencyclidine: contrasting patterns to striatal response. Eur. J. Pharmacol. 134:257–264.

    Google Scholar 

  74. Kashihara, K., Hamamura, T., Okumura, K., and Otsuki, S. 1990. Effect of MK-801 on endogenous dopamine release in vivo. Brain Res. 528:80–82.

    Google Scholar 

  75. Carlsson, M., and Carlsson, A. 1989. The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J. Neural Transm. 75:221–226.

    Google Scholar 

  76. Carlsson, M., and Svensson, A. 1991. The non-competitive NMDA antagonists MK-801 and PCP, as well as the competitive NMDA antagonist SDZEAA494 (D-CPPene), interact synergistically with clonidine to promote locomotion in monoamine-depleted mice. Life Sci. 47:1729–1736.

    Google Scholar 

  77. Carlsson, M., and Carlsson, A. 1989. Dramatic synergism between MK-801 and clonidine with respect to locomotor stimulatory effect in monoamine-depleted mice. J. Neural Transm. 77:65–71.

    Google Scholar 

  78. Nehls, D. G., Park, C. K., MacCormack, A. G., and McCulloch, J. 1990. The effects of N-methyl-D-aspartate receptor blockade with MK-801 upon the relationship between cerebral blood flow and glucose utilisation. Brain Res. 511:271–279.

    Google Scholar 

  79. Park, C. K., Nehls, D. G., Teasdale, G. M., and McCulloch, J. 1989. Effect of the NMDA Antagonist MK-801 on Local Cerebral Blood Flow in Focal Cerebral Ischaemia in the Rat. J. Cereb. Blood Flow Metab. 9:617–622.

    Google Scholar 

  80. Buchan, A. M., Xue, D., and Slivka, A. 1990. MK-801 reduces the volume of neocortical infarction but also increases regional cerebral blood flow. Stroke 21:163.

    Google Scholar 

  81. Perkins, W. J., Lanier, W. L., Karlsson, B. R., Milde, J. H., and Michenfelder, J. D. 1989. The effect of the excitatory amino acid receptor antagonist dizocilpine maleate (MK-801) on hemispheric cerebral blood flow and metabolism in dogs: modification by prior complete cerebral ischemia. Brain Res. 498:34–44.

    Google Scholar 

  82. Cavazzuti, M., Porro, C. A., Biral, G. P., Benassi, C., and Barbieri, G. C. 1987. Ketamine Effects on Local Cerebral Blood Flow and Metabolism in the Rat. J. Cereb. Blood Flow Metab. 7:806–811.

    Google Scholar 

  83. Takizawa, S., Hogan, M., and Hakim, A. 1990. The effect of CGS-19755 on local cerebral pH (LCpH) and cerebral blood flow (CBF) in middle cerebral artery (MCA) and ipsilateral common carotid artery (CCA) occluded rats. Neurosci. Abs. 16:273.

    Google Scholar 

  84. Rapoport, S. I., Ohno, K., and Pettigrew, K. D. 1979. Drug entry into brain. Brain Res. 172:354–359.

    Google Scholar 

  85. Blasberg, R. G., Patlak, C. S., and Fenstermacher, J. D. 1983. Selection of Experimental Conditions for the Accurate Determination of Blood-Brain Transfer Constants from Single Time Experiments: A Theoretical Analysis. J. Cereb. Blood Flow Metab. 3:215–225.

    Google Scholar 

  86. Patel, S., Chapman, A. G., Graham, J., and Meldrum, B. 1990. Anticonvulsant activity of the NMDA antagonists, D(−)4-(3-phosphonopropyl)piperazine-2-carboxylic acid (D-CPP) and D(−)(E)-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylic acid (D-CPPene) in a rodent and a primate model of reflex epilepsy. Epilepsy Research 7:3–10.

    Google Scholar 

  87. Wallace, M. C., McCormack, A., and McCulloch, J. 1989.3H-MK-801: an in vivo ligand for glutamate mechanisms in the normal and ischemic brain. J. Cereb. Blood Flow Metab. 9:S182.

    Google Scholar 

  88. Wallace, M. C., Teasdale, G. M., and McCulloch, J. 1989. Autoradiographic Demonstration of Increased MK-801 Binding in Ischaemic Tissue. J. Cereb. Blood Flow Metab. 9:S745.

    Google Scholar 

  89. Price, G. W., Ahier, R. G., Middlemiss, D. N., Singh, L., Tricklebank, M. D., and Wong, E. H. F. 1988. In vivo labelling of the NMDA receptor channel complex by [3H]-MK-801. Eur. J. Pharmacol. 158:279–282.

    Google Scholar 

  90. Blin, J., Denis, A., Yamagushi, T., Crouzel, C., MacKenzie, E. T., and Baron, J. C. 1989. PET Studies of18F-Fluorethyl-MK-801 in the Baboon's Brain: A Potential NMDA Receptor Complex Radiologand. J. Cereb. Blood Flow Metab. 9:Suppl. 1:S293.

    Google Scholar 

  91. Ransom, R. W., Eng, W-s., Burns, H. D., Gibson, R. E., and Solomon, H. F. 1990. (+)-3-123I]iodo-MK-801 [MK-801]: Synthesis and characterization of binding to the N-methyl-D-aspartate receptor complex. Life Sci. 46:1103–10.

    Google Scholar 

  92. McCulloch, J., Wallace, M. C., Laurie, D., Angerson, W. J., Burns, H. D., and Gibson, R. E. 1991. The Enhanced Binding of (+)-3-125Iodo MK-801 Maps Excessive Glutamate Release: Potential as a Ligand for SPECT. J. Cereb. Blood Flow Metab. 11:Suppl 2:56.

    Google Scholar 

  93. Gibson, R. E., Weckstein, D. J., Jagoda, E. M., Rzeszotarski, W. J., Reba, R. C., and Eckelman, W. C. 1984. The Characteristics of 1-125 4-IQNB and H-3 QNB In Vivo and In Vitro. J. Nucl. Med. 25:214–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Louis Sokoloff

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCulloch, J., Iversen, L.L. Autoradiographic assessment of the effects of N-methyl-d-aspartate (NMDA) receptor antagonists in vivo. Neurochem Res 16, 951–963 (1991). https://doi.org/10.1007/BF00965838

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965838

Keywords

Navigation