Skip to main content
Log in

Excitatory and inhibitory amino acid changes in ischemic brain regions in spontaneously hypertensive rats

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Excitatory (glutamate, aspartate) or inhibitory amino acids (γ-aminobutyric acid: GABA, taurine) and glutamine contents were examined in acutely induced cerebral ischemia in spontaneously hypertensive rats. At 20 min ischemia most of these amino acids remained unchanged, but glutamine significantly decreased by 14% in the CA3 hippocampal subfield. At 60 min ischemia glutamate significantly decreased by 14% in the CA3, aspartate by 17–26% in the CA3, cingulate cortex, septum and striatum. In contrast, GABA significantly increased by 48–106% in the cortices (frontal, parietal and cingulate), striatum and nucleus accumbens, but insignificantly in hippocampal subrïelds. Likewise, taurine increased in the parietal cortex and nucleus accumbens. Glutamine showed heterogeneous changes (increase in the nucleus accumbens and decrease in the CA3). Amino acid levels change during ischemia, but their changes are varied in each area, implying that different reaction of amino acids may explain the selective vulnerability to cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frederickson, R. C. A., Neuss, M., Morzorati, S. L., and McBride, W. J. 1978. A comparison of the inhibitory effects of taurine and GABA on identified Purkinje cells and other neurons in the cerebellar cortex of the rats. Brain Res. 145:117–126.

    Google Scholar 

  2. Fonnum, F. 1984. Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42:1–11.

    Google Scholar 

  3. Schwarcz, R., and Meldrum, B. 1985. Excitatory amino acid antagonists provide a therapeutic approach to neurological disorders. Lancet ii: 140–143.

    Google Scholar 

  4. Maragos, W. F., Greenamyre, J. T., Penny, J. B. Jr. and Young, A. B. 1987. Glutamate dysfunction in Alzheimer's disease: an hypothesis. Trends Neurosci. 10:65–68.

    Google Scholar 

  5. Sherwin, A., Robitaille, Y., Quesney, F., Olivier, A., Villemure, J., Leblanc, R., Feindel, W., Andermann, E., Gotman, J., Andermann, F., Ethier, R., and Kish, S. 1988. Excitatory amino acids are elevated in human epileptic cerebral cortex. Neurology 38:920–923.

    Google Scholar 

  6. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H. 1984. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43:1369–1374.

    Google Scholar 

  7. Hagberg, H., Lehmann, A., Sandberg, M., Nyström, B., Jacobson, I., and Hamberger, A. 1985. Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular components. J. Cereb. Blood Flow Metab. 5:413–419.

    Google Scholar 

  8. Yao, H., Matsumoto, T., Hirano, M., Uchimura, H., Ooboshi, H., Sadoshima, S., and Fujishima, M. 1990. Striatal glutamic acid and γ-aminobutyric acid in transient cerebral ischemia in spontaneously hypertensive rats. Jpn. Heart. J. 31:385–392.

    Google Scholar 

  9. Schurr, A., Tseng, M. T., West, C. A., and Rigor, B. M. 1987. Taurine improves the recovery of neuronal function following cerebral hypoxia: an in vitro study. Life Sci. 40:2059–2066.

    Google Scholar 

  10. Lust, W. D., Assaf, H. M., Ricci, A. J., Ratcheson, R. A., and Sternau, L. L. 1988. A role for γ-aminobutyric acid (GABA) in the evolution of delayed neuronal death following ischemia. Metab. Brain Dis. 3:287–292.

    Google Scholar 

  11. Duffy, T. E., Nelson, S. R., and Lowry, O. H. 1972. Cerebral carbonhydrate metabolism during acute hypoxia and recovery. J. Neurochem. 19:959–977.

    Google Scholar 

  12. Norberg, K., and Siesjö, B. K. 1975. Cerebral metabolism in hypoxic hypoxia, II, Citric acid cycle intermediates and associated amino acids. Brain Res. 86:45–54.

    Google Scholar 

  13. Erecińska, M., Nelson, D., Wilson, D. F., and Silver, I. A. 1984 Neurotransmitter amino acids in the CNS. I. Regional changes in amino acids levels in rat brain during ischemia and reperfusion. Brain Res. 304:9–22.

    Google Scholar 

  14. Mrsulja, B. B., Djuricic, B. M., Ueki, Y., Lust, W. D., and Spatz, M. 1989. Cerebral ischemia: Changes in monoamines are independent of energy metabolism. Neurochem. Res. 14:1–7.

    Google Scholar 

  15. Kolluri, V. R. S., and Lakshmi, G. Y. C. V. S. 1989. Changes in regional levels of putative neurotransmitter amino acids in brain under unilateral forebrain ischemia. Neurochem. Res. 14:621–625.

    Google Scholar 

  16. Fujishima, M., Sugi, T., Morotomi, Y., and Omae, T. 1975. Effects of bilateral carotid artery ligation on brain lactate and pyruvate concentrations in normotensive and spontaneously hypertensive rats. Stroke 6:62–66.

    Google Scholar 

  17. Ogata, J., Fujishima, M., Morotomi, Y., and Omae, T. 1976. Cerebral infarction following bilateral carotid artery ligation in normotensive and spontaneously hypertensive rats. A pathological study. Stroke 7:54–60.

    Google Scholar 

  18. Fujishima, M., Ishitsuka T., Nakatomi. Y., Tamaki, K., and Omae, T. 1981. Changes in local cerebral blood flow following bilateral carotid occlusion in spontaneously hypertensive and normotensive rats. Stroke 12:874–876.

    Google Scholar 

  19. Choki, J., Yamaguchi, T., Takeya, Y., Morotomi, Y., and Omae, T. 1977. Effect of carotid artery ligation on regional cerebral blood flow in normotensive and spontaneously hypertensive rats. Stroke 8:374–379.

    Google Scholar 

  20. Sadoshima, S., Nakatomi, Y., Ooboshi, H., Fujii, K., Ishitsuka, T., and Fujishima, M. 1988. Effect of recirculation on the recovery of cerebral metabolism after experimental cerebral ischemia in male and female spontaneously hypertensive rats. Gerontology 34:171–178.

    Google Scholar 

  21. Onodera, H., Sato, G., and Kogure, K. 1986. Lesions to Schaffer collaterals prevent ischemic death of CA1 pyramidal cells. Neurosci. Lett. 68:169–174.

    Google Scholar 

  22. Benveniste, H., Jørgensen, M. B., Sandberg, M., Christensen, T., Hagberg, H., and Diemer, N. H. 1989. Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3. J. Cereb. Blood Flow Metab. 9:629–639.

    Google Scholar 

  23. Wieloch, T., Lindvall, O., Blomovist, P., and Gage, F. H. 1985. Evidence for amelioration of ischaemic neuronal damage in the hippocampal formation by lesions of the perforant path. Neurol. Res. 7:24–26.

    Google Scholar 

  24. Johansen, F. F., Jørgensen, M. B., and Diemer, N. H. 1986. Ischemic CA-1 pyramidal cell loss is prevented by preischemic colchicine destruction of dentate gyrus granule cells. Brain Res. 377:344–347.

    Google Scholar 

  25. Jørgensen, M. B., Johansen, F. F., and Diemer, N. H. 1987. Removal of the entorhinal cortex protects hippocampal CA-1 neurons from ischemic damage. Acta Neuropathol. (Berl). 73:189–194.

    Google Scholar 

  26. Kaplan, T. M., Lasner, T. M., Nadler, J. V., and Crain, B. J. 1989. Lesions of excitatory pathways reduce hippocampal cell death after transient forebrain ischemia in the gerbil. Acta Neuropathol. (Berl). 78:283–290.

    Google Scholar 

  27. Kirino, T. 1982. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239:57–69.

    Google Scholar 

  28. Okamoto, K., and Aoki, K. 1963. Development of a strain of spontaneously hypertensive rats. Jpn. Circ. J. 27:282–293.

    Google Scholar 

  29. Yao, H., Matsumoto, T., Hirano, M., Kuroki, T., Tsutsumi, T., Uchimura, H., Nakahara, K., and Fujishima M. 1989. Involvement of brain stem noradrenergic neurons in the development of hypertension in spontaneously hypertensive rats. Neurochem. Res. 14:75–79.

    Google Scholar 

  30. Paxinos, G., and Watson, C. 1986. The rat brain in stereotaxic coordination. Academic Press, Sydney.

    Google Scholar 

  31. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  32. Fonnum, F. 1988 Excitatory amino acid pathway and the biochemical architecture of the glutamate terminal. Pages 85–92,in Cavalherio, E. A., Lehmann, J., and Turski, L. (eds.), Frontiers in excitatory amino acid research. Alan R. Liss, Inc., New York.

    Google Scholar 

  33. Engelsen, B., and Fonnum, F. 1983. Effects of hypoglycemia on the transmitter pool and the metabolic pool of glutamate in rat brain. Neurosci. Lett. 42:317–322.

    Google Scholar 

  34. Bradford, H. F., Ward, H. K., and Thomas, A. J. 1978. Glutamine —a major substrate for nerve endings. J. Neurochem. 30:1453–1459.

    Google Scholar 

  35. Hamberger, A. C., Chiang, G. H., Nylén, E. S., Scheff, S. W., and Cotman, C. W. 1979. Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of peferentially released glutamate. Brain Res. 168:513–530.

    Google Scholar 

  36. Smith, M.-L. Auer, R. N., and Siesjö, B. K. 1984. The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta neuropathol. (Berl). 64:319–332.

    Google Scholar 

  37. Picone, C. M., Grotta, J. C., Earls, R., and Dedman, J. 1989. Immunohistochemical determination of calcium-calmodulin binding predicts neuronal damage after global ischemia. J. Cereb. Blood Flow Metab. 9:805–811.

    Google Scholar 

  38. Perry, T. L., Hansen, S., and Gandham, S. S. 1981. Postmortem changes of amino compounds in human and rat brain. J. Neurochem. 36:406–412.

    Google Scholar 

  39. Elekes, I., Patthy, A., Lang, T., and Palkovits, M.. 1986. Concentrations of GABA and glycine in discrete brain nuclei of rats. Neuropharmacology 25:703–709.

    Google Scholar 

  40. Balcom, G. J., Lenox, R. H., and Meyerhoff, J. L. 1975. Regional γ-aminobutyric acid levels in rat brain detemined after microwave fixation. J. Neurochem. 24:609–613.

    Google Scholar 

  41. Nakamura, K., Matsumoto, T., Hrano, M., Kagoshima, H., Kuroki, T., Yao, H., Uchimura, H., and Nakahara, T. 1987. Mass fragmentographic determination of γ-aminobutyric acid and glutamic acid in discrete amygdaloid nuclei of rat brain. J. Neurochem. 48:1842–1844.

    Google Scholar 

  42. Phillis J. W., and Walter, G. A. 1990. Effect of a brief hypoxic/ hypotensive episode on the in vivo release of cerebral cortical γ-aminobutylic acid and glycine. Brain Res. 504:121–123.

    Google Scholar 

  43. Sternau, L. L., Lust, W. D., Ricci, A. J., and Ratchenson, R. 1989. Role for γ-aminobutylic acid in selective, vulnerability in gerbils. Stroke 20:281–287.

    Google Scholar 

  44. Lehmann, A., Hagberg, H., Andiné, P., and Elhén, K. 1988. Taurine and neuronal resistance to hypoxia. FEBS Lett 233:437–438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ooboshi, H., Yao, H., Matsumoto, T. et al. Excitatory and inhibitory amino acid changes in ischemic brain regions in spontaneously hypertensive rats. Neurochem Res 16, 51–56 (1991). https://doi.org/10.1007/BF00965827

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965827

Key words

Navigation