Skip to main content
Log in

Rat brain monoamine and serotonin S2 receptor changes during pregnancy

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The concentrations of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and their metabolites were determined in 5 brain areas of non-pregnant, 15 and 20 day pregnant and 4 day post-partum rats. Striatal 5-HT content was significantly lower in 15 and 20 day pregnant rats than in estrous controls. A significant decrease in striatal and frontal cortex 5-hydroxyindole-3-acetic acid (5-HIAA) concentration was observed in 15 day pregnant rats. Significant increases in hypothalamic and hippocampal NA levels were observed at 4 days post-partum. Frontal cortex serotonin S2 receptorKd was reduced in 4 day post-partum rats. There was no significant change in S2 receptorB max during pregnancy. Levels of progesterone were negatively correlated with striatal DA, homovanillic acid (HVA), 5-HT, and 5-HIAA levels, hypothalamic DA, hippocampal 5-HT, and frontal cortex 5-HIAA values as well as striatal HVA to DA, and HVA to 3,4-dihydroxyphenylacetic acid (DOPAC) ratios and amygdaloid HVA to DOPAC ratios. The limbic neurotransmitter changes might possibly contribute to mood changes which occur during pregnancy and post-partum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maggi, A., and Perez, J. 1985. Role of female gonadal hormones in the CNS: clinical and experimental aspects. Life Sci. 37:893–906.

    PubMed  Google Scholar 

  2. Biegon, A., Fischette, C. T., Rainbow, T. C. and McEwen, B. S. 1982. Serotonin receptor modulation by estrogen in discrete brain nuclei. Neuroendocrinology. 35:287–291.

    PubMed  Google Scholar 

  3. Biegon, A., and McEwen, B. S. 1982. Modulation by estradiol of serotonin 1 receptors in brain. J. Neurosci. 2:199–205.

    PubMed  Google Scholar 

  4. Biegon, A., Reches, A., Snyder, L., and McEwen, B. S. 1983. Serotonergic and noradrenergic receptors in the rat brain: modulation by chronic exposure to ovarian hormones. Life Sci. 32:2015–2021.

    PubMed  Google Scholar 

  5. Cardinali, D. P., and Gómez, E. 1977. Changes in hypothalamic noradrenaline, dopamine and serotonin uptake after oestradiol administration to rats. J. Endocrinol. 73:181–182.

    PubMed  Google Scholar 

  6. Cramer, O. M., Parker, C. R., Jr., and Porter, J. C, 1979. Estrogen inhibition of dopamine release into hypophysial portal blood. Endocrinology. 104:419–422.

    PubMed  Google Scholar 

  7. Crowley, W. R. 1982. Effects of ovarian hormones on norepinephrine and dopamine turnover in individual hypothalamic and extrahypothalamic nuclei. Neuroendocrinology. 34:381–386.

    PubMed  Google Scholar 

  8. Ahrén, K., Fuxe, K., Hamberger, L., and Hökfelt, T. 1971. Turnover changes in the tubero-infundibular dopamine neurons during the ovarian cycle of the rat. Endocrinology. 88:1415–1424.

    PubMed  Google Scholar 

  9. Carr, L. A., and Voogt, J. L. 1980. Catecholamine synthesizing enzymes in the hypothalamus during the estrous cycle. Brain Research. 196:437–445.

    PubMed  Google Scholar 

  10. Findder, J. M., and Tonge, S. R. 1975. Variations in the concentrations of monoamines and their metabolites in eight regions of rat brain during the estrous cycle: a basis for interactions between hormones and psychotrophic drugs. J. Pharm. Pharmacol. 27:39P.

    Google Scholar 

  11. Luine, V. N., Khylchevskaya, R. I., and McEwen, B. S. 1975. Effect of gonadal steroids on activities of monoamine oxidase and choline acetylase in rat brain. Brain Research. 86:293–306.

    PubMed  Google Scholar 

  12. Luine, V. N., and Rhodes, J. C. 1983. Gonadal hormone regulation of MAO and other enzymes in hypothalamic areas. Neuroendocrinology. 36:235–241.

    PubMed  Google Scholar 

  13. McEwen, B. S. 1987. Glucocorticoid-biogenic amine interactions in relation to mood and behavior. Biochem. Pharmacol. 36:1755–1763.

    PubMed  Google Scholar 

  14. Desan, P. H., Woodmansee, W. W., Ryan, S. M., Smock, T. K., and Maier, S. F. 1988. Monoamine neurotransmitters and metabolites during the estrous cycle, pregnancy, and the postpartum period. Pharmacol. Biochem. Behav. 30:563–568.

    PubMed  Google Scholar 

  15. Wirz-Justice, A. 1987. Circadian rhythms in mammalian neurotransmitter receptors. Prog. Neurobiol. 29:219–259.

    PubMed  Google Scholar 

  16. Russell, V. A., Lamm, M. C. L., De Villiers, A. S., Taljaard, J. J. F., and Chalton, D. O. 1985. Effects of combined administration of L-tryptophan and tricyclic antidepressants on α2- and β-adrenoceptors and monoamine levels in rat brain. Neurochem. Res. 10:1661–1671.

    PubMed  Google Scholar 

  17. Allin, R., Russell, V. A., Lamm, M. C. L., and Taljaard, J. J. F. 1988. Regional distribution of monoamines in the nucleus accumbens of the rat. Neurochem. Res. 13:937–942.

    PubMed  Google Scholar 

  18. Leysen, J. E., Niemegeers, C. J. E., Van Neuten, J. M., and Laduron, P. M. 1982. [3H]Ketanscrin (R41 468), a selective3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol. Pharmacol. 21:301–314.

    PubMed  Google Scholar 

  19. Miller, G. L. 1959. Protein determination for large numbers of samples. Anal. Chem. 31:964.

    Google Scholar 

  20. Scatchard, G. 1949. The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51:660–672.

    Google Scholar 

  21. Munson, P. J., and Rodbard, D. 1980. LIGAND: A versatile computerized approach for characterization of ligand binding systems. Anal. Biochem. 107:220–239.

    PubMed  Google Scholar 

  22. Al-Dujaili, E. A. S., and Edwards, C. R. W. 1978. The development and application of a direct radioimmunoassay for plasma aldosterone using125I-labeled ligand-comparison of three methods. J. Clin. Endocrinol. Metab. 46:105–113.

    PubMed  Google Scholar 

  23. Al-Dujaili, E. A. S., Williams, B. C., and Edwards, C. R. W. 1981. The development and application of a direct radioimmunoassay for corticosterone. Steroids. 37:157–176.

    PubMed  Google Scholar 

  24. Ochiai, K., Terashima, Y., Hachiya, S-I, and Maruyama, M. 1986. Effects of sexual steroid hormones treatment on Ca2+ sensitivity of chemically skinned uterine muscle fibres from ovariectomized rats. Jpn. J. Physiol. 36:1275–1279.

    PubMed  Google Scholar 

  25. Orpen, B. G., Furman, N., Wong, P. Y., and Fleming, A. S. 1987. Hormonal influences on the duration of postpartum maternal responsiveness in the rat. Physiol. Behav. 40:307–315.

    PubMed  Google Scholar 

  26. Pepe, G. J., and Rothchild, I. 1974. A comparative study of serum progesterone levels in pregnancy and in various types of pseudopregnancy in the rat. Endocrinology. 95:275–279.

    PubMed  Google Scholar 

  27. Shaikh, A. A. 1971. Estrone and estradiol levels in the ovarian venous blood from rats during the estrous cycle and pregnancy. Biol. Reprod. 5:297–307.

    PubMed  Google Scholar 

  28. Smolen, A., Smolen, T. N., and Van de Kamp, J. L. 1987. Alterations in brain catecholamines during pregnancy. Pharmacol. Biochem. Behav. 26:613–618.

    PubMed  Google Scholar 

  29. Zuspan, F. P., Nelson, G. H., Ahlquist, R. P., and Williams, S. 1967. Alterations of urinary epinephrine and norepinephrine. The antepartum, intrapartum, and postpartum periods. Am. J. Obs. Gyne. 99:709–721.

    Google Scholar 

  30. Van Praag, H. M. 1982. Neurotransmitters and CNS disease. Depression. Lancet II (8310):1259–1264.

    Google Scholar 

  31. Peabody, C. A., Faull, K. F., King, R. J., Whiteford, H. A., Barchas, J. D., and Berger, P. A. 1986. CSF amine metabolites and depression. Psychiat. Res. 21:1–7.

    Google Scholar 

  32. Kendal, D. A., Stancel, G. M., and Enna, S. J. 1981. Imipramine: Effect of ovarian steroids on modifications in serotonin receptor binding. Science. 211:1183–1185.

    PubMed  Google Scholar 

  33. Ramirez, O. A., and Carrer, H. F. 1982. Effects of estrogen and progesterone priming on the uptake and release of serotonin and noradrenaline from the ventromedial hypothalamus. Acta physiol. latinoam. 32:313–319.

    Google Scholar 

  34. Breuer, H., and Köster, G. 1974. Interaction between oestrogens and neurotransmitters at the hypophysial-hypothalamic level. J. Steroid Biochem. 5:961–967.

    Google Scholar 

  35. Holzbauer, M., and Youdim, M. B. H. 1973. The oestrous cycle and monoamine oxidase activity. Br. J. Pharmacol. 48:600–608.

    PubMed  Google Scholar 

  36. Paul, S. M., Axelrod, J., Saavedra, J. M., and Skolnick, P. 1979. Estrogen-induced efflux of endogenous catecholamines from the hypothalamus in vitro. Brain Research. 178:499–505.

    PubMed  Google Scholar 

  37. Löfström, A., and Bäckström, T. 1978. Relationship between plasma estradiol and brain catecholamine content in the diestrous female rat. Psychoneuroendocrinology. 3:103–107.

    PubMed  Google Scholar 

  38. Greengrass, P. M., and Tonge, S. R. 1974. Further studies on monoamine metabolism in three regions of mouse brain during pregnancy: monoamine metabolite concentrations and the effects of injected hormones. Arch. int. Pharmacodyn. 212:48–59.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaser, J., Russell, V.A., de Villiers, A.S. et al. Rat brain monoamine and serotonin S2 receptor changes during pregnancy. Neurochem Res 15, 949–956 (1990). https://doi.org/10.1007/BF00965738

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965738

Key Words

Navigation