Skip to main content
Log in

Effect of hypoxia on mitochondrial protein composition of cerebral cortex during aging

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of hypoxia on the protein composition of mitochondria from cerebral cortex of rats at 4, 12, and 24 months of age was investigated. The proteins were separated by electrophoresis on SDS polyacrilamide gels and the percent content was evaluated by measuring the optical density of the stained gels. The results demonstrate that hypoxic treatment causes a decrease in the amount of some proteins as follows: the 90 and the 16 kDa Mw proteins at 4 months; the 82 and the 79 kDa Mw proteins at 24 months; the 52-49, 35 and 20 kDa at all ages investigated; the 44 kDa protein at 4 and 12 months and the 28 kDa protein at 4 and 24 months of age. Our results show that hypoxic conditions affect mitochondrial protein composition to a greater extent than aging alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giuffrida-Stella, A. M., and Lajtha, A. 1987. Macromolecular turnover in brain during aging. Gerontology 33:136–148.

    PubMed  Google Scholar 

  2. Dwyer, B. E., Fando, J. L., and Wasterlain, C. G. 1980. Rat brain protein synthesis declines during postdevelopmental aging. J. Neurochem. 35:746–749.

    PubMed  Google Scholar 

  3. Fando, J. L., Salinas, M., and Wasterlain, C. G. 1980. Age-dependent changes in brain protein synthesis in the rat. Neurochem. Res. 5:373–378.

    PubMed  Google Scholar 

  4. Avola, R. Condorelli, D. F., Ragusa, N., Alberghina, M., Renis, M., and Giuffrida-Stella, A. M. 1988. Rate of protein synthesis in various brain regions and subcellular fractions during aging. Neurochem. Res. 13:337–342.

    PubMed  Google Scholar 

  5. Hansford, H. G. 1983. Bioenergetics in aging. Biochim. Biophys. Acta 726:41–80.

    PubMed  Google Scholar 

  6. Vorbeck, M., Martin, A. P., Lang, J. W. K., Smith, J. N., and Orr, R. 1982. Aging dependent modification of lipid composition and lipid structural order parameter of hepatic mitochondria. Arch. Biochem. Biophys. 277:351–361.

    Google Scholar 

  7. Tachi, H., and Sato, T. 1968. Age changes in size and number of mitchondria of human hepatic cells. J. Gerontol. 23:454–461.

    PubMed  Google Scholar 

  8. Stocco, D. M., and Hutson, J. C. 1970. Quantitation of mitochondrial DNA and protein in the liver of Fisher 344 rats during aging. J. Gerontol. 33:802–809.

    Google Scholar 

  9. Herbener, G. H. 1976. A morphometric study of age-dependent changes in mitochondrial populations of mouse liver and heart. J. Gerontol. 231:8–12.

    Google Scholar 

  10. Chen, J. C., Warshaw, J. P., and Sanadi, D. R. 1980. Regulation of mitchondrial respiration in senescence. J. Cell. Physiol. 80:141–148.

    Google Scholar 

  11. Miquel, J., Economos, A. C., Fleming, J., and Johnson, J. E. 1980. Mitchondrial role in cell aging. Exp. Geront. 15:575–591.

    Google Scholar 

  12. Miquel, J., and Fleming, J. 1986. Theoretical and experimental support for an oxygen radical-Mitochondrial Injury hypothesis of cell agin. Modern Aging Research. Vol. 8, Pages 51–74,in Johnson, J. E., Walford, R., Harman, D., and Miquel, J. (eds.), Free Radicals, Aging and Degenerative Diseases. Alan Liss Inc., New York.

    Google Scholar 

  13. Weinbach, E. C., and Garbus, J. 1959. Oxidative phosphorylation in mitochondria from aged rats. J. Biol. Chem. 234:412–417.

    PubMed  Google Scholar 

  14. Nohl, H., Breuninger, H., and Von Hegner, D. 1978. Influences of mitochondrial radical formation on energy-linked respiration. Eur. J. Biochem. 90:385–390.

    PubMed  Google Scholar 

  15. Nohl, H., and Hegner, D. 1978. Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82:863–867.

    Google Scholar 

  16. Nohl, H., and Kramer, J. 1980. Molecular basis of age-dependent changes in the activity of adenine-nucleotide translocase. Mech. Ageing Dev. 14:137–144.

    PubMed  Google Scholar 

  17. Benzi, G., Arrigoni, E., Dagani, F., Marzatico, M., Curti, D., Raimondo, S., Dossena, M., Polgatti, M., and Villa, R. F. 1980. Age-dependent modifications of drug intereference on the enzymatic activities of the rat brain. Exp. Gerontol. 15:593–603.

    PubMed  Google Scholar 

  18. Benzi, G., Arrigoni, E., Pastoris, O., Villa, R. F., Dossena, M., Agnoli, A., and Giuffrida, A. M. 1982. Drug action on the metabolic changes induced by acute hypoxia on synaptosomes from the cerebral cortex. J. Cereb. Blood. Flow. Metabol. 2:229–239.

    Google Scholar 

  19. Benzi, G., and Giuffrida, A. M. 1987. Changes of synaptosomal energy metabolism induced by hypoxia during aging. Neurochem. Res. 12:149–157.

    PubMed  Google Scholar 

  20. Harman, D. 1981. The aging process. Proc. Natl. Acad. Sci. 78:7124–7128.

    PubMed  Google Scholar 

  21. Benzi, G., and Giuffrida, A. M. 1985. Bioenergetics of hypoxic brain during aging. Mol. Physiol. 8:535–547.

    Google Scholar 

  22. Duffy, T. E., Nelson, S. R., and Lowry, O. H. 1972. Cerebral carbohydrate metabolism during acute hypoxia and recovery. J. Neurochem. 19:959–977.

    PubMed  Google Scholar 

  23. Morimoto, K., Brengman, J., and Yanagihara, T. 1978. Further evaluation of polypeptide synthesis in cerebral anoxia, hypoxia and ischemia. J. Neurochem. 31:1277–1282.

    PubMed  Google Scholar 

  24. Rouser, G., Kritchevsky, G., Yamamoto A., and Baxter, C. F. 1972. Lipids in the nervous system of different species as a function of age: brain, spinal cord, peripheral nerve, purified whole cell preparations and subcellular particulates: regulatory mechanism and membrane structure. Adv. Lipid Res. 10:261–361.

    Google Scholar 

  25. Turpeenoja, L., Villa, R. F., Magrì, G., and Giuffrida-Stella, A. M. 1988. Changes in mitochondrial membrane proteins in rat cerebellum during aging. Neurochem. Res. 13:859–865.

    PubMed  Google Scholar 

  26. Villa, R. F., Turpeenoja, L., Benzi, G., and Giuffrida-Stella, A. M. 1988. Action of L-acetylcarnitine on age-dependent modifications of mitochondrial membrane proteins from rat cerebellum. Neurochem. Res. 13:909–916.

    PubMed  Google Scholar 

  27. Ragusa, N., Turpeenoja, L., Magrì, G., Ladesmaki, P., and Giuffrida-Stella, A. M. 1989. Age-dependent modifications of mitochondrial proteins in cerebral cortex and striatum of rat brain. Neurochem. Res. 14:515–518.

    Google Scholar 

  28. Gray, E. G., Whittaker, V. P. 1962. The isolation of nerve endings from brain: an electronmicroscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96:79–88.

    PubMed  Google Scholar 

  29. De Robertis, E., Pellegrino de Iraldi, A., Rodriguez de Lores Arnaiz, G., and Salganicoff, L. 1962. Cholinergic and non-cholinergic nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J. Neurochem. 9:23–35.

    PubMed  Google Scholar 

  30. Avola, R., Serra, I., Curti, D., Lombardo, B., Renis, M., Condorelli, D. F., and Giuffrida, A. M. 1986. Nuclear and mitochondrial DNA synthesis and energy metabolism in primary rat glial cell cultures. Neurochem. Res. 11:789–800.

    PubMed  Google Scholar 

  31. Laemmli, U. K. 1970. Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–684.

    Google Scholar 

  32. Lowry, O. M., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  33. DePierre, J. W., and Ernster, L. 1977. Enzyme topology of intracellular membranes. Ann. Rev. Biochem. 46:207–230.

    Google Scholar 

  34. Hay, R., Bohni, P., and Gasser, S. 1984. How mitchondria import proteins. Biochim. Biophys. Acta 779:65–87.

    PubMed  Google Scholar 

  35. Hatefi, Y. 1985. The mitochondrial electron transport and oxidative phosphorylation system. Ann. Rev. Biochem. 54:1015–1069.

    PubMed  Google Scholar 

  36. Vitorica, J., Clark, A., Machado, A., and Satrustequi, J. 1985. Impairment of glutamate uptake and absence of alterations in the energy transducing ability of old rat brain mitochondrial. Mech. Ageing Dev. 229:255–266.

    Google Scholar 

  37. Giuffrida, A. M., Alberghina, M., Serra, I., and Viola, M. 1985. Biochemical changes of lipid, nucleic acid and protein metabolism in brain regions during hypoxia. Effect of CDP-choline. Pages 217–238,in Zappia, V., Kennedy, E. P., Nilsson, B. J. and Galletti, P. (eds.) Novel Biochemical, Pharmacological and Clinical Aspects of Cytidinediphosphocholine. Elsevier Science Publishing Company Inc., New York.

    Google Scholar 

  38. Villa, R. F., Gorini, A., Zanada, F., and Benzi, G. 1986. Action of L-acetylcarnitine on different cerebral mitchondria populations from hippocampus. Arch. Int. Pharmacodyn. Therap. 279:195–211.

    Google Scholar 

  39. Villa, R. F., Gorini, A., Lo Faro, A., and Dell'Orbo, C. 1989. Enzyme activities in perikaryal and synaptic mitochondrial fractions from rat hippocampus during development. Mech. Aging Dev. 39:213–225.

    Google Scholar 

  40. Villa, R. F., Gorini, A., Zanada, F., and Benzi, G. 1986. Changes of acetylcholinesterase and (Na+−K+)ATPase activities of synaptic plasma membranes from cerebral cortex of 4 and 8 month-old-rats. It. J. Biochem. 35:120A-123A.

    Google Scholar 

  41. Gorini, A., Arnaboldi, R., and Villa R. F. 1989. Age related changes in acetylcholinesterase activity of synaptic plasma membranes from rat cerebral cortex frontal area. It. J. Biochem. 38:112A-115A.

    Google Scholar 

  42. Bradley, M. O., Dice, J. F., Hayflick, L., and Schimke, R. T. 1975. Protein alterations in aging WI 38 cells as determined by proteolytic susceptibility. Exp. Cell. Res. 96:103–112.

    PubMed  Google Scholar 

  43. Bradley, M. O., Hayflick, L., and Schimke, R. T. 1976. Protein degradation in human fibroblasts (W138). Effects of aging, viral transformation and amino acid analogs. J. Biol. Chem. 251:3521–3529.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Santiago Grisolia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villa, R.F., Turpeenoja, L., Magrì, G. et al. Effect of hypoxia on mitochondrial protein composition of cerebral cortex during aging. Neurochem Res 16, 821–826 (1991). https://doi.org/10.1007/BF00965692

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965692

Key Words

Navigation