Skip to main content
Log in

Different long-term effects of bilateral and unilateral nucleus basalis lesions on rat cerebral cortical neurotransmitter content

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Young adult rats received either unilateral or bilateral ibotenic acid infusions in their nucleus basalis, destroying most of the cholinesterase-staining neurons in that region. Cerebral cortex levels of choline acetyltransferase, somatostatin, neuropeptide Y, and monoamines were then assayed 2.5 and 10 months after bilateral lesions, or, 2.5, 10, and 14 months after unilateral lesions. Entorhinal and cerebral cortex levels of several amino acid transmitters were also measured. As expected, choline acetyltransferase activity was decreased in the frontal cortex ipsilateral to the ibotenic acid infusion in unilaterally or bilaterally lesioned animals. Parietal cortex concentrations of somatostatin and neuropeptide Y were altered by lesioning in a complicated, time-dependent manner. Thus, while unilateral lesions transiently decreased or had no effect on these neuropeptide levels, bilateral lesions elevated the level of each neuropeptide by over 100% at 10 months. Other cortical transmitter systems investigated appeared to be less affected by nucleus basalis-lesions. Unilateral lesions had no effect on prefrontal cortex norepinephrine, serotonin, or dopamine content at 14 months post-lesioning. These different neurochemical effects of unilateral and bilateral nucleus basalis lesions may be important for developing a model for the trans-synaptic effects of cortical cholinergic deafferentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fibiger, H. C., 1982. The organization and some projections of cholinergic neurons of the mammalian forebrain.Brain Res. Rev. 4:327–388.

    Google Scholar 

  2. Bartus, R. T., Pontecorvo, M. J., Flicker, C., Dean, R. L., and Figueiedo, J. C. 1986. Behavioral recovery following bilateral lesions of the nucleus basalis does not occur spontaneously. Pharmacol. Biochem. Behav. 24:1287–1292.

    Google Scholar 

  3. Arendash, G. W., Strong, P. N., and Mouton, P. R. 1985. Intracerebral transplantation of cholinergic neurons in a new animal model for Alzheimer's disease. pp. 351–367, In:Senile Dementia of the Alzheimer Type, Edited by J. Hutton and A. Kenny, Alan R. Liss, Inc., New York.

    Google Scholar 

  4. Flicker, C., Dean, R. L., Watkins, D. L., Fisher, S. K. and Bartus, R. T. 1983. Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex of the rat.Pharmacol. Biochem. Behav. 18:973–981.

    Google Scholar 

  5. Knowlton, B. J., Wenk, G. L., Olton, D. S., and Coyle, J. T. 1985. Basal forebrain lesions produced dissociation of trial dependent and trial independent memory performance.Brain Res. 345:315–321.

    Google Scholar 

  6. Murray, C. L., and Fibiger, H. C. 1985. Learning and memory deficits after lesions of the nucleus basalis magnocellularis: reversal by physostigmine.Neuroscience 14:1025–1032.

    Google Scholar 

  7. Arendash, G. W., Millard, W. J., Dunn, A. J., and Meyer, E. M. 1987. Long-term neuropathological and chemical changes after lesions of the rat nucleus basalis magnocellularis.Science 238:952–956.

    Google Scholar 

  8. McKinney, M., Davies, P. and Coyle, J. T. 1982. Somatostatin is not co-localised in cholinergic neurons innervating the rat cerebral cortex-hippocampal functions.Brain Res 243:169–172.

    Google Scholar 

  9. Fine, A., Pittaway, K., De Quidt, M., Czudek, C. and Reynolds, G. P. 1987. Maintenance of cortical somatostatin and monoamine levels in the rat does not require intact cholinergic innervation.Brainn Res. 406:326–329.

    Google Scholar 

  10. Konig, J. and Klippel, A. 1963.The Rat Brain A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem. William and Wilkins, Baltimore, MD.

    Google Scholar 

  11. Arendash, G. W. and Mouton, P. R. 1987. Transplantation of nucleus basalis magnocellularis cholinergic neurons into the cholinergic-depleted cerebral cortex: morphological and behavioral effects.Ann. N.Y. Acad. Sci. 495:431–443.

    Google Scholar 

  12. Roskoski, R. 1973. Choline acetyltransferasc. Evidence for an acetylenzyme reaction intermediate.Biochemistry 12:3709–3713.

    Google Scholar 

  13. Arnold, M. A., Reppert, S. M., Rorstad, O. P., Sagar, S. M., Keutman, H. T., Perlow, M. J. and Martin, J. B. 1982. Daily pattern of somatostatin in the cerebrospinal fluid of the rhesus monkey: effect of environmental lighting.J Neurosci 2:674–680.

    Google Scholar 

  14. Beal, M. F., Mazurek, M. F., Chattha, G. K., Svendsen, C. V., Bird, E. D. and Martin, J. B. 1986a. Neuropeptide Y immunoreactivity is reduced in cerebral cortex in Alzheimer's Disease.Annals of Neurology 20:282–28.

    Google Scholar 

  15. Beal, M. F., M. F. Mazurek, L. J. Lorenz, G. K., Chattha, D. W., Ellison, and J. B., Martin, 1986b. An, examination of neuropeptide Y post-mortem stability in animal model simulating human autopsy conditions.Neurosci Lett. 64:69–74.

    Google Scholar 

  16. Dunn, A. J. and Berridge, C. W. 1987. Corticotropin releasing factor administration elicits a stress-like activation of cerebral catecholaminergic systems.Pharmacol. Biochem. Behav. 27:685–691.

    Google Scholar 

  17. Bradford, M. 1976. A new technique for the determination of protein in small samples.Anal. Biochem. 72:248–254.

    Google Scholar 

  18. Montminy, M. R. and Bilezikjian, L. M. 1987. Binding of a nuclear protein to the cyclic AMP response element of the somatostatin gene.Nature 328:175–178.

    Google Scholar 

  19. Higuchi, H. and Sabol, S. L. 1987., Rat neuropeptide Y precursor mRNA: characterization, tissue distribution, and regulation by glucocorticoids, cyclic AMP, calcium and NGF.,17th Annual Society for Neurosciences Abstracts: 176.

  20. Olianas, M. C., Onali, P., Neff, N. H. and Costa, E. 1983. Adenylate cyclase activity of synaptic membranes from rat striatum: inhibition by muscarinic agonists.Mol. Pharmacol. 23:393–398.

    Google Scholar 

  21. Meyer, E., arendash, G., Judkins, J., Ying, L., Wade, C., and Kem, W. 1987. Effects of Nucleus Basalis Lesions on the Muscarinic and Nicotinic Modulation of [3H]Acetylcholine Release in the Rat Cerebral Cortex.J. Neurochem. 49:1758–1762.

    Google Scholar 

  22. Potter, L. T., Flynn, D. D., Hanchett, H. E., Kalinoski, D. L., Luber-Narod, J. and Mash, D. C. 1984. Independent M1 and M2 receptors: Ligands, autoradiography and functions.Trends PHarmacol. Sci. 5 (Suppl.) 22–31.

    Google Scholar 

  23. Bartus, R. T., Flicker, C., Dean, R. L., Pontecorvo, M., Figueiredo, J. C. and Fisher, S. K. 1985. Selective memory loss following nucleus basalis lesions: long term behavioral recovery despite persistent cholinergic deficiencies.Pharmacol. Biochem. Behav. 23:125–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arendash, G.W., Millard, W.J., Dawson, R. et al. Different long-term effects of bilateral and unilateral nucleus basalis lesions on rat cerebral cortical neurotransmitter content. Neurochem Res 14, 1113–1118 (1989). https://doi.org/10.1007/BF00965617

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965617

Key Words

Navigation