Skip to main content
Log in

Hypoxia induced metabolism dysfunction of rat astrocytes in primary cell cultures

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In order to study the astroglial contribution to hypoxic injury on brain tissue metabolism, modifications of glutamine synthetase (GS) lactate dehydrogenase (LDH) enolase and malate dehydrogenase activity produced by reduced oxygen supply have been determined in primary cultures of astrocytes prepared from newborn rat cerebral cortex. Enzymatic activities were measured immediately after the hypoxic treatment (9 h) and during post injury recovery. GS level is significantly decreased in response to low oxygen pressure and increased above control value during the post hypoxic recovery period. The magnitude of GS reduction by hypoxia depends on the age of the cells in culture. Lactate dehydrogenase and enolase levels were significantly enhanced during the two periods considered. No modification of the MDH level was observed. The synthesis of LDH isoenzymes containing mainly M subunits is specifically induced by hypoxia. Our results suggest that astroglial cells may represent a particularly sensitive target toward hypoxia injury in brain tissue. Low oxygen pressure available may modify some fundamental metabolical functions of these cells such as glutamate turnover and lactic acid accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plum, F. 1983. What causes infarction in ischemic brain? Neurology 33:222–233.

    PubMed  Google Scholar 

  2. Lowry, O. H., Passoneau, J. V., Hasselberger, F. X., and Schulz, D. W. 1964. Effect of ischemia on know substrates and cofactors of the glycolytic pathway in brain. J. Biol. Chem. 239:18–30.

    PubMed  Google Scholar 

  3. Djurivic, B. M., Paschen, W., Bosma, H. J., and Hossmann, K. A. 1983. Biochemical changes during graded brain ischemia in gerbils: 1. Global biochemical alterations. J. Neurol. Sci. 58:25–36.

    PubMed  Google Scholar 

  4. Yamamoto, M., Hamasaki, N., Maruta, Y., and Tomonaga, M. 1990. Fructose 2,6-biphosphate changes in rat brain during ischemia. J. Neurochem. 54:592–597.

    PubMed  Google Scholar 

  5. Gibson, G. E., and Peterson, C. 1982. Decreases in the release of acetylcholine in vitro with low oxygen. Biochem. Pharmacol. 31:111–115.

    PubMed  Google Scholar 

  6. Freeman, G. B., Mykytyn, V., and Gibson, G. E. 1987. Differential alteration of dopamine, acetylcholine and glutamate release during anoxia and/or 3,4 diaminopyridine treatment. J. Neurochem. 47:1924–1931.

    Google Scholar 

  7. Park, I. R., Thorn, M. B., and Bachelard, H. S. 1987. Threshold requirement for oxygen in the release of acetylcholine from, and in the maintenance in the energy state, in rat brain synaptosomes. J. Neurochem. 49:781–788.

    PubMed  Google Scholar 

  8. Nemoto, E. M. 1985. Brain ischemia. Pages 553–588in (Lajtha, A., (ed.) Handbook of Neurochemistry, Plenum Press, New York.

    Google Scholar 

  9. Siesjo, B. K. 1985. Membrane events leading to glial swelling and brain edema. Pages 200–209,in Inaba, Y., Klatzo, I., Spatz, M., (eds.), Brain Edema. Springer-Verlag, Berling.

    Google Scholar 

  10. Kimelberg, H. K. 1983. Primary astrocyte culture—a key to astrocyte function. Cell. Mol. Neurobiol. 3:1–16.

    PubMed  Google Scholar 

  11. Weibel, M., Pettmann, B., Daune, G., Labourdette, G., and Sensenbrenner, M., 1984. Chemically defined medium for the rat astroglial cells in primary cultures. Int. J Devl. Neuroscience. 2:355–366.

    Google Scholar 

  12. Kimelberg, H. K., and Ransom, B. R. 1986. Physiological and pathological aspects of astrocytic swelling. Pages 129–166,in Fedoroff, S., Vernadakis, A. (eds.), Astrocytes Vol. 3. Academic Press, Orlando.

    Google Scholar 

  13. Gregory, G. A., Yu, A. C. H., and Chan, P. H. 1989. Fructose 1,6 biphosphate protects astrocytes from hypoxic damage. J. Cerebr. Blood Flow Metabol. 9:29–34.

    Google Scholar 

  14. Yu, A. C. H., Gregory, G. A., and Chan, P. H. 1989. Hypoxia-induced dysfunction and injury of astrocytes in primary cell cultures. J. Cerebr. Blood Flow Metabol. 9:20–28.

    Google Scholar 

  15. Rothman, S. M., and Olney, J. W. 1986. Glutamate and pathophysiology of hypoxic-ischemic brain damage. Ann. Neuro. 19:105–111.

    Google Scholar 

  16. Choi, D. W., Maulucci-Gedde, M., and Kriegstein, A. R. 1987. Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 7:357–368.

    PubMed  Google Scholar 

  17. Chan, P. K., Fishmann, R. A., Lee, J. L., and Candelise, L. 1979. Effects of excitatory neurotransmitter amino-acid on swelling of rat brain cortical slices. J. Neurochem. 33:1309–1315.

    PubMed  Google Scholar 

  18. Chan, P. H., Chu, L., and Chew, S. 1990. Effects of MK-801 on glutamate induced swelling of astrocytes in primary cell culture. J. Neurosci. Res. 25:87–93.

    PubMed  Google Scholar 

  19. Henn, F. A., Goldstein, M. N., and Hamberger, A. 1974. Uptake of the neurotransmitter candidate glutamate by glia. Nature 249:663–664.

    PubMed  Google Scholar 

  20. Norenberg, M. D., and Martinez-Hernandez, A. 1979. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 160:539–543.

    PubMed  Google Scholar 

  21. Berl, S., Lajtha, A., and Waelsch, H. 1961. Aminoacid and protein metabolism. VI. Cerebral compartments of glutamic acid metabolism. J. Neurochem. 7:186–197.

    Google Scholar 

  22. Deloulme, J. C., Janet, T., Au, D., Storm D. R., Sensenbrenner, M., and Baudier, J. 1990. Neuromodulin (GAP43): a neuronal protein kinase C substrate is also present in 0–2 glial cell lineage characterization of neuromodulin in secondary cultures of oligodendrocytes and comparison with the neuronal antigen. J. Cell Biol. 111:1559–1569.

    PubMed  Google Scholar 

  23. Tholey, G., Ghandour, M. S., Bloch, S., Ledig, M., and Mandel, P. 1987. Glutamine synthetase and energy metabolism enzymes in cultivated chick neurons and astrocytes: modulation by serum and hydrocortisone. Develop. Brain Res. 31:73–81.

    Google Scholar 

  24. Roth-Schechter, B. F., Laluet, M., Tholey, G., and Mandel, P. 1977. The effect of pentobarbital on the carbohydrate metabolism of glial cells in culture. Biochem. Pharmacol. 26:1307–1313.

    Google Scholar 

  25. Ledig, M., Kopp, P., and Mandel, P. 1985. Effect of ethanol on adenosine triphosphatase and enolase activitities in rat brain and in cultured nerve cells. Neurochem. Res. 10:1311–1324.

    PubMed  Google Scholar 

  26. Lowry, O. H., Rosebrough, W. J., Farr, A. L., and Randall, R. J. 1951. Protem measurement, with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  27. Nitisewojo, P., and Hultin, H. O. 1976. A comparison of some kinetic properties of soluble and bound dehydrogenase isoenzymes at different temperatures. Eur. J. Biochem. 67:87–94.

    PubMed  Google Scholar 

  28. Fonnum, F. 1984. Glutamate: a neurotransmitter in the mammalian brain. J. Neurochem. 42:1–11.

    PubMed  Google Scholar 

  29. Olney, J. W. 1978. Neurotoxicity of excitatory aminoacids. pages 95–121.In (Mc Geer, E. G., Olney, J. W., Mc Geer, P. L., (eds.). Kainic Acid as a Tool in Neurobiology Raven Press, New York.

    Google Scholar 

  30. Engelsen, B., Fosse, U. M., Myrseth, E., and Fonnum, F. 1985. Elevated concentrations of glutamate and aspartate in human ventricular cerebrospinal fluid (VCSF) during episodes of increased CSF pressure and clinical signs of impaired brain circulation. Neurosci. Lett. 62:97–102.

    PubMed  Google Scholar 

  31. Sastry-Kolluri, V. R., and Lakshmi, G. Y. C. V. S. 1989. Changes in regional levels of putative neurotransmitter aminoacids in brain under unilateral forebrain ischemia. Neurochem. Res. 14:621–625.

    PubMed  Google Scholar 

  32. Gibson, G. E., Manger, T., Toral-Barza, L., and Freeman, G. 1989. Cytosolic-free calcium and neurotransmitter release with decreased availability of glucose on oxygen. Neurochem. Res. 14:437–443.

    PubMed  Google Scholar 

  33. Peterson, C., Nicholls, D. G., and Gibson, G. E. 1985. Subsynaptosomal calcium distribution during hypoxia and 3,4-diaminopyridine treatment. J. Neurochem. 45:1779–1790.

    PubMed  Google Scholar 

  34. Hertz, L., and Schousboe, A. 1986. Role of astrocytes in compartmentation of aminoacid and energy metabolism. Pages 179–208,in Fedoroff, S., Vernadakis, A., (eds.) “Astrocytes: Biochemistry, Physiology, and Pharmacology of Astrocytes” Vol. 2 Academic Press, Orlando.

    Google Scholar 

  35. Oliver, C. N., Starke-Reed P. E., Stadtman, E. R., Liu, G. J., Carney, J. M., and Floyd, R. A. 1990. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc. Natl. Acad. Sci. USA 87:5144–5147.

    PubMed  Google Scholar 

  36. Perraud, F., Besnard, F., Pettmann, B., Sensenbrenner, M., and Labourdette, G. 1988. Effects of acidic and basic fibroblast growth factors (aFGF and bFGF) on the proliferation and the glutamine synthetase expression of rat astroblasts in culture. Glia 1:124–131.

    PubMed  Google Scholar 

  37. Kawaï, S., Yonetani, M., Nakamura, H., and Okada, Y. 1989. Effects of deprivation of oxygen and glucose on the neural activity and the level of high energy phosphates in the hypocampal slices of immature and adult rat. Develop. Brain Res. 48:11–18.

    Google Scholar 

  38. Behar, K. L., Rothman, D. L., Shulman, R. G., Petroff, O. A. C., and Prichard, J. W. 1984. Detection of cerebral lactate in vivo during hypoxemie by1H NMR at relative low field strengths (1.9 T). Proc. Nat. Acad. Sci. USA 81:2517–1519.

    PubMed  Google Scholar 

  39. Tholey, G., Roth-Schechter, B. F., and Mandel, P. 1981. Activity and isoenzyme pattern of lactate dehydrogenase in neurons and astroblasts cultured from brains of chick embryos. J. Neurochem. 36:77–81.

    PubMed  Google Scholar 

  40. Schmidt-Kastner, R., Szymas, J., and Hossmann, A. 1990. Immunohistochemical study of glial reaction and serum-protein extravariation in relation to neuronal damage in rat hippocampus after ischemia. Neuroscience 38:527–540.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tholey, G., Copin, J.C. & Ledig, M. Hypoxia induced metabolism dysfunction of rat astrocytes in primary cell cultures. Neurochem Res 16, 423–428 (1991). https://doi.org/10.1007/BF00965561

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965561

Key Words

Navigation