Skip to main content
Log in

The in vitro release of endogenousm-tyramine,p-tyramine and dopamine from rat striatum

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Administration of phenelzine (100 mg/kg, i.p., 18 hr) increased rat striatal concentrations of pTA, mTA and DA by 30, 6.7 and 1.5 fold, respectively. Lesions of the medial forebrain bundle prevented these increase, permitting the conclusion that the phenelzine-induced amine increases were localized in the synaptic terminals. The release of endogenous pTA, mTA and DA from striatal slices obtained from phenelzine-treated rats was investigated. 50 mM KCl elicited releases of pTA, mTA and DA which were significantly greater than their respective basal releases. These K+-stimulated releases were antagonized significantly by 15 mM MgCl2, suggesting that they are calcium-dependent in nature. We have concluded, therefore, that mTA and pTA, as well as DA, are released from striatal nerve terminals in vivo. The total amounts of mTA and DA, but not pTA, released in the release experiments were greater than those found in the nonincubated tissue. It appears, therefore, that the biosynthesis of mTA and DA was stimulated during the incubation of the striatal slices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stoof, J. C., Liem, A. L., andMulder, A. H. 1976. Release and receptor stimulating properties of p-tyramine in rat brain. Arch. Int. Pharmacodyn. 220:62–71.

    Google Scholar 

  2. Dyck, L. E., andBoulton, A. A. 1980. The effect of reserpine and various monoamine oxidase inhibitors on the uptake and release of tritiatedmeta-tyramine,para-tyramine and dopamine in rat striatal slices. Res. Comm. Psychol. Psych. Behav. 5:61–78.

    Google Scholar 

  3. Bustos, G., andRoth, R. H. 1972. Release of monoamines from the striatum and hypothalamus: effect of γ-hydroxybutyrate. Br. J. Pharmac. 46:101–115.

    Google Scholar 

  4. Haycock, J. W., andMeligeni, J. A. 1977. Neurotransmitter accumulation and calcium-dependent release from different regions of rat brain. Life Sci. 21:1837–1844.

    Google Scholar 

  5. Arbilla, S., andLanger, S. 1978. Morphine and β-endorphin inhibit release of noradrenaline from cerebral cortex but not of dopamine from rat striatum. Nature 271:559–561.

    Google Scholar 

  6. Lane, J. D., andAprison, M. H. 1977. Calcium-dependent release of endogenous serotonin, dopamine and norepinephrine from nerve endings. Life Sci. 20:665–672.

    Google Scholar 

  7. Meyerhoff, J. L., andKant, G. J. 1978. Release of endogenous dopamine from corpus striatum. Life Sci. 23:1481–1486.

    Google Scholar 

  8. Philips, S. R., Davis, B. A., Durden, D. A., andBoulton, A. A. 1975. Identification and distribution ofm-tyramine in the rat. Can. J. Biochem. 53:65–69.

    Google Scholar 

  9. Philips, S. R., Durden, D. A., andBoulton, A. A. 1974. Identification and distribution ofp-tyramine in the rat. Can. J. Biochem. 52:366–373.

    Google Scholar 

  10. Philips, S. R., andBoulton, A. A. 1979. The effect of monoamine oxidase inhibitors on some arylalkylamines in rat striatum. J. Neurochem. 33:159–167.

    Google Scholar 

  11. Konig, J. F. R., andKlippel, R. A. 1963. The Rat Brain, Williams and Wilkins, Baltimore.

    Google Scholar 

  12. Laverty, R., andSharman, D. F. 1975. The estimation of small quantities of 3,4-dihydroxyphenylethylamine in tissues. Br. J. Pharmacol. 24:538–548.

    Google Scholar 

  13. Ungerstedt, U. 1971. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scan. Suppl. 367:1–48.

    Google Scholar 

  14. Boulton, A. A. andBaker, G. B. 1975. The subcellular distribution of β-phenylethylamine,p-tyramine and tryptamine in rat brain. J. Neurochem. 25:477–481.

    Google Scholar 

  15. Boulton, A. A., Juorio, A. V., Philips, S. R., andWu, P. H. 1977. The effects of reserpine and 6-hydroxydopamine on the concentrations of some arylalkylamines in rat brain. Br. J. Pharmacol. 59:209–214.

    Google Scholar 

  16. Juorio, A. V., andJones, R. S. G. 1981. The effect of mesencephalic lesions on tyramine and dopamine in the caudate nucleus of the rat. J. Neurochem. 36:1898–1903.

    Google Scholar 

  17. Harvey, J. A. andMcIwain, H. 1969. Electrical phenomena and isolated tissues from the brain. Handbk. Neurochem., 2:115–136.

    Google Scholar 

  18. Walters, J. R., Roth, R. H., andAghajanian, G. K. 1973. Dopaminergic neurons: Similar biochemical and histochemical effects of γ-hydroxybutyrate and acute lesions of the nigrostriatal pathway. J. Pharmacol. Exp. Ther. 186:630–639.

    Google Scholar 

  19. Bell, L. J., Iversen, L. L., andUretsky, N. J. 1970. Time course of the effects of 6-hydroxydopamine on catecholamine containing neurones in rat hypothalamus and striatum. Br. J. Pharmacol. 40:790–799.

    Google Scholar 

  20. Andén, N. E., Magnusson, T., andStock, G. 1973. Effects of drugs influencing monoamine mechanisms on the increase in brain dopamine produced by axotomy or treatment with gamma-hydroxybutyric acid. N.S. Arch Pharmacol. 278:363–372.

    Google Scholar 

  21. Stock, G., Magnusson, T. andAndén, N. E. 1973. Increase in brain dopamine after axotomy or treatment with gamma-hydroxybutyric acid due to elimination of the nerve impulse flow. N.S. Arch Pharmacol. 278:347–361.

    Google Scholar 

  22. Morgenroth, V. H. III, Walters, J. R., andRoth, R. H. 1976. Dopaminergic neuron alterations in the kinetic properties of tyrosine hydroxylase after cessation of impulse flow. Biochem. Pharmac. 25:655–661.

    Google Scholar 

  23. Mitoma, C., Posner, H. S., Bogdanski, D. F., andUdenfriend, S. 1957. Biochemical and pharmacological studies ono-tyrosine and itsmeta andpara analogues. A suggestion concerning phenylketonuria. J. Pharmacol. Exp. Ther. 120:188–194.

    Google Scholar 

  24. Tong, J. H., D'Iorio, A., andBenoiton, N. L. 1971. Formation ofmeta-tyrosine from L-phenylalanine by beef adrenal medulla, a new biosynthetic route to catecholamines. Biochem. Biophys. Res. Comm. 44:229–236.

    Google Scholar 

  25. Boulton, A. A. 1976. Cerebral aryl alkyl aminergic mechanisms. Pages 21–39,in Usdin, E. andSandler, M. (eds.), Trace Amines and the Brain, M. Dekker Inc., New York.

    Google Scholar 

  26. Ishimitsu, S., Fujimotor, S., andOhara, A. 1980. Formation ofm-tyrosine ando-tyrosine from L-phenylalanine by rat brain homogenate. Chem. Pharm. Bull. 28:1653–1655.

    Google Scholar 

  27. Dyck, L. E. 1978. Uptake and release ofmeta-tyramine,para-tyramine and dopamine in rat striatal slices. Neurochem. Res. 3:775–791.

    Google Scholar 

  28. Dyck, L. E., Boulton, A. A., andJones, R. S. G. 1980. A comparison of the effects of methylphenidate and amphetamine on the simultaneous release of dopamine andp orm-tyramine from rat striatal slices. Eur. J. Pharmacol. 68:33–40.

    Google Scholar 

  29. Hillman, H. H., andMcIlwain, H. 1961. Membrane potentials in mammalian cerebral tissues in vitro: Dependence on ionic environment. J. Physiol. 157:263–278.

    Google Scholar 

  30. Baker, P. F., andRink, T. J. 1975. Catecholamine release from bovine adrenal medulla in response to maintained depolarization. J. Physiol. 253:593–620.

    Google Scholar 

  31. Wakade, A. R., andKirpekar, S. M. 1974. Calcium-independent release of3H-norepinephrine from reserpine-pretreated guinea-pig vas deferens and seminal vesicle. J. Pharmacol. Exp. Ther. 190:451–458.

    Google Scholar 

  32. Thoa, N. B., Wooten, G. F., Axelrod, J., andKopin, I. J. 1975. On the mechanism of release of norepinephrine from sympathetic nerves induced by depolarizing agents and sympathomimetic drugs. Mol. Pharmac. 11:10–18.

    Google Scholar 

  33. Vargas, O., Doria de Lorenzo, M. C., Saldate, M. C., andOrrego, F. 1977. Potassium-induced release of [3H]GABA and of [3H]noradrenaline from normal and reserpinized rat brain cortex slices. Differences in calcium-dependency, and in sensitivity to potassium ions. J. Neurochem. 28:165–170.

    Google Scholar 

  34. Trendelenburg, U. 1972. Classification of sympathomimetic amines. Pages 336–362,in Blaschko, H. andMuscholl, E. (eds.), Handbook of Experimental Pharmacology, Vol. XXXIII, New Series, Catecholamines, Springer-Verlag, Berlin.

    Google Scholar 

  35. Jones, R. S. G., andBoulton, A. A. 1980. Interactions betweenp-tyramine,m-tyramine or β-phenylethylamine and dopamine on single neurons in the cortex and caudate nucleus of the rat. Can. J. Physiol. Pharmacol. 58:222–227.

    Google Scholar 

  36. Jones, R. S. G. 1981. Specific enhancement of neuronal responses to catecholamine byp-tyramine. J. Neurosci. Res. 6:49–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyck, L.E., Juorio, A.V. & Boulton, A.A. The in vitro release of endogenousm-tyramine,p-tyramine and dopamine from rat striatum. Neurochem Res 7, 705–716 (1982). https://doi.org/10.1007/BF00965523

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965523

Keywords

Navigation