Skip to main content
Log in

Amino acid incorporation in relation to molecular weight of proteins in young and adult brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Rates of protein synthesis were studied in immature and adult rat brain tissue. After an amino acid incorporation period, in vivo or in incubated slices from brain, the soluble protein was fractionated according to molecular weight by column chromatography. In examining soluble whole proteins, no direct correlation between molecular weights and synthesis rates could be established; the highest synthesis rates were found in fractions around 70,000 MW and below 10,000. Incorporation into the subunits after fractionation by SDS gel electrophoresis was proportional to subunit molecular weight, with rates of incorporation into the largest subunits being the highest. The results suggest a relationship between turnover rate and structure of subunits of brain proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dice, J. F., andGoldberg, A. L. 1976. Structural properties of rat serum proteins which correlate with their degradative rates in vivo. Nature 262:514–516.

    PubMed  Google Scholar 

  2. Dice, J. F., Hess, E. J., andGoldberg, A. L. 1979. Studies on the relationship between the degradative rates of proteins in vivo and their isoelectric points. Biochem. J. 178:305–312.

    PubMed  Google Scholar 

  3. Dehlinger, P. J. andSchimke, R. T. 1970. Effect of size on relative rates of degradation of rat liver soluble proteins. Biochem. Biophys. Res. Commun. 40:1473–1480.

    PubMed  Google Scholar 

  4. Glass, R. D. andDoyle, D. 1972. On the measurement of protein turnover in animal cells. J. Biol. Chem. 247:5234–5242.

    PubMed  Google Scholar 

  5. Dice, J. F., Dehlinger, P. J., andSchimke, R. T. 1973. Studies on correlation between size and relative degradation rates of soluble proteins. J. Biol. Chem. 248:4220–4228.

    PubMed  Google Scholar 

  6. Dice, J. F., andGoldberg, A. L. 1975. A statistical analysis of the relationship between degradative rates and molecular weights of proteins. Arch. Biochem. Biophys. 170:213–219.

    PubMed  Google Scholar 

  7. Ames, A., III, Parks, J. M., andNesbett, F. B. 1980. Protein turnover in retina. J. Neurochem. 35:131–142.

    PubMed  Google Scholar 

  8. Shahbazian, F. M., Jacobs, M., andLajtha, A. 1985. Regional and cellular differences in rat brain protein synthesis in vivo and in slices during development. Int. J. Dev. Neurosci. (in press).

  9. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    PubMed  Google Scholar 

  10. Peters, K. E., andCommings, D. E. 1980. Two dimensional gel electrophoresis of rat liver nuclear washes, nuclear matrix and hnRNA proteins. J. Cell Biol. 86:135–155.

    PubMed  Google Scholar 

  11. Blakesely, R. W., andBoezi, J. A. 1977. A new staining technique for proteins in polyacrylamide gels using Coomassie brilliant blue G250. Anal. Biochem. 82:580–582.

    PubMed  Google Scholar 

  12. Moore, P. A. 1980. Liquid scintillation counting of polyacrylamide gels crosslinked with N,N′-methylene-bis-acrylamide and N,N′-diallyltartardiamide. Anal. Biochem. 108:151–155.

    PubMed  Google Scholar 

  13. Hansen, J. N. 1976. Electrophoresis of ribonucleic acids on polyacrylamide gels which contain disulfide cross linkages. Anal. Biochem. 76:37–44.

    PubMed  Google Scholar 

  14. Hansen, J. N., Pfeiffer, B. H., andBoehneri, J. A. 1979. Chemical and electrophoretic properties of solubilized disulfide gels. Anal. Biochem. 105:192–201.

    Google Scholar 

  15. Anker, H. S. 1970. A solubilizable acrylamide gel for electrophoresis. FEBS Lett. 1:293.

    Google Scholar 

  16. Spath, P. J., andKoblet, H. 1979. Properties of SDS-polyacrylamide gels highly cross-linked with N,N′-diallyltartardiamide and rapid isolation of macromolecules from the gel matrix. Anal. Biochem. 93:275–285.

    PubMed  Google Scholar 

  17. Weber, K., andOsborn, M. 1969. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244:4406–4412.

    PubMed  Google Scholar 

  18. Kahn, R., andRubin, R. W. 1975. Quantitation of submicrogram amounts of protein using Coomassie brilliant blue R on sodium dodecyl sulfate-polyacrylamide slab-gels. Anal. Biochem. 67:347–352.

    PubMed  Google Scholar 

  19. Laitha, A., andDunlop, D. 1981. Turnover of proteins in the nervous system. Life Sci. 29:755–767.

    PubMed  Google Scholar 

  20. Czosnek, H., Soifer, D., andWisniewski, H. M. 1980. Heterogeneity of intermediate filament proteins from rabbit spinal cord. Neurochem. Res. 5:777–793.

    PubMed  Google Scholar 

  21. White, F. P. 1980. Differences in protein synthesized in vivo and in vitro by cells associated with cerebral microsvasculature. A protein synthesized in response to trauma. Neuroscience 5:1793–1799.

    PubMed  Google Scholar 

  22. White, F. P. 1980. The synthesis and possible transport of specific proteins by cells associated with brain capillaries. J. Neurochem. 35:88–94.

    PubMed  Google Scholar 

  23. White, F. P. 1981. The induction of “stress” proteins in organ slices from brain, heart and lung as a function of postnatal development. J. Neurosci. 1:1312–1319.

    PubMed  Google Scholar 

  24. Hightower, L. E., andWhite, F. P. 1981. Cellular response to stress. Comparison of a family of 71–73 kilodalton protein rapidly synthesized in rat tissue slices and cavaninetreated cells in culture. J. Cell Physiol. 108:261–275.

    PubMed  Google Scholar 

  25. Currie, R. W., andWhite, F. P. 1981. Trauma-induced protein in rat tissues: A physiological role for a “heat-shock” protein. Science 214:72–73.

    PubMed  Google Scholar 

  26. Pearce, B. R., Dutton, G. R., andWhite, F. P. 1983. Induction of a stress protein in developing cell cultures of the rat cerebellum. J. Neurochem. 41:291–294.

    PubMed  Google Scholar 

  27. Cosgrove, J. W., andBrown, I. R. 1983. Heat shock protein in mammalian brain and other organs after a physiologically relevant increase in body temperature induced by D-lysergic acid diethylamide. Proc. Natl. Acad. Sci. USA 80:569–573.

    PubMed  Google Scholar 

  28. Dice, J. F., andSchimke, R. T. 1972. Turnover and exchange of ribosomal proteins from rat liver. J. Biol. Chem. 247:98–111.

    PubMed  Google Scholar 

  29. Goldberg, A. L., andDice, J. F. 1974. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem. 43:835–869.

    PubMed  Google Scholar 

  30. Goldberg, A. L., Howell, E. M., Li, J. B., Martel, S. B., andProuty, W. F. 1974. Physiological significance of protein degradation in animal and bacterial cells. Fed. Proc. 33:1112–1120.

    PubMed  Google Scholar 

  31. Kalish, F., Chovick, N., andDice, J. F. 1979. Rapid in vivo degradation of glycoproteins isolated from cytosol. J. Biol. Chem. 254:4475–4481.

    PubMed  Google Scholar 

  32. Dice, J. F., Walker, C. D., Byrne, B., andCardiel, A. 1978. Proc. Natl. Acad. Sci. USA 75:2093–2097.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahbazian, F.M., Jacobs, M. & Lajtha, A. Amino acid incorporation in relation to molecular weight of proteins in young and adult brain. Neurochem Res 11, 647–660 (1986). https://doi.org/10.1007/BF00965334

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965334

Keywords

Navigation