Skip to main content
Log in

Developmental changes in DNAse I digestibility and RNA template activity of neuronal nuclei relative to the postnatal appearance of a short DNA repeat length

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurons of the rat cerebral hemispheres are known to undergo a postnatal shift to a short DNA repeat length. In the present study we report that rat neuronal nuclei are more sensitive to digestion with DNAse I when isolated at a developmental stage after the shift in neuronal DNA repeat length compared to nuclei isolated before the shift. This observation may suggest that a decondensation of neuronal chromatin accompanies the postnatal shift in DNA repeat length. We have also found that neuronal nuclei isolated after the shift to a short DNA repeat length demonstrate an increased ability to synthesize RNA in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

op:

base pairs

PCA:

perchloric acid

RSB:

reticulocyte standard buffer

TCA:

trichloroacetic acid

PMSF:

phenylmethylsulfonylfuoride

References

  1. Kornberg, R. D. 1977. Structure of chromatin. Ann. Rev. Biochem. 46:931–954.

    Google Scholar 

  2. Felsenfeld, G., 1978. Chromatin. Nature 271:115–122.

    Google Scholar 

  3. Horgen, P. A., andSilver, J. C. 1978. Chromatin structure in eukaryotic microbes. Ann. Rev. Microbiol. 32:249–284.

    Google Scholar 

  4. McGhee, J. D., andFelsenfeld, G. 1980. Nucleosome structure. Ann. Rev. Biochem. 49:1115–1156.

    Google Scholar 

  5. Thomas, J. O., andThompson, R. J. 1977. Variation in chromatin structure in two cell types from the same tissue: a short DNA repeat length in cerebral cortex neurons. Cell 10:633–640.

    Google Scholar 

  6. Brown, I. R. 1978. Postnatal appearance of a short DNA repeat length in neurons of the cerebral cortex. Biochem. Biophys. Res. Commun. 84:285–292.

    Google Scholar 

  7. Brown, I. R., andGreenwood, P. 1982. Chromosomal components in brain cells. Pages 41–69,in Brown, I. R. (ed.), Molecular Approaches to Neurobiology, Academic Press, New York.

    Google Scholar 

  8. Ermini, M., andKuenzle, C. C. 1978. The chromatin repeat length of cortical neurons shortens during early postnatal development. FEBS Lett. 90:167–172.

    Google Scholar 

  9. Whatley, S. A., Hall, C., andLim, L. 1981. Chromatin organization in the rat hypothalamus during early development. Biochem. J. 196:115–119.

    Google Scholar 

  10. Burkholder, G. D., andWeaver, M. G. 1975. Differential accessibility of DNA in extended and condensed chromatin to pancreatic DNAse I. Exptl. Cell Res. 92:518–522.

    Google Scholar 

  11. Long, B. H., Huang, C. Y., andPogo, A. O. 1979. Isolation and characterization of the nuclear matrix in Friend erythroleukemia cells: Chromatin and hnRNA interactions with the nuclear matrix. Cell 18:1079–1090.

    Google Scholar 

  12. Jalouzot, R., Briane, D., Ohlenbusch, H. H., Wilhelm, M. L., andWilhelm, F. X. 1980. Kinetics of nuclease digestion ofPhysarum polycephalum nuclei at different stages of cell cycle. Eur. J. Biochem. 104:423–431.

    Google Scholar 

  13. Morris, N. R. 1976. A comparison of the structure of chicken erythrocyte and chicken liver chromatin. Cell 9:627–632.

    Google Scholar 

  14. Spadafora, C., Pellard, M., Compton, J. L., andChambon, P. 1976. The DNA repeat lengths in chromatins from sea urchin sperm and gastrula cells are markedly different. FEBS Lett. 69:281–285.

    Google Scholar 

  15. Brown, I. R. 1975. RNA synthesis in isolated brain nuclei after administration of dlysergic acid diethylamide (LSD) in vivo. Proc. Nat. Acad. Sci. U.S.A. 72:837–839.

    Google Scholar 

  16. Thompson, R. J. 1973. Studies on RNA synthesis in two populations of nuclei from the mammalian cerebral cortex. J. Neurochem. 21:19–40.

    Google Scholar 

  17. Sellinger, O. Z., Azcurra, J. M., Johnson, D. E., Ohlsson, W. G., andLodin, Z. 1971. Independence of protein synthesis and drug uptake in nerve cell bodies and glial cells isolated by a new technique. Nature New Biol. 230:235–256.

    Google Scholar 

  18. Dische, Z., andSchwarz, K. 1973. Microchemical methods for determining various pentoses in the presence of one another and of hexoses. Mikrochim. Acta. 2:13–19.

    Google Scholar 

  19. Siegel, G. J., Albers, R. W., Katzman, R., andAgranoff, B. W. 1976. Basic Neurochemistry (2nd ed.), Page 375, Little, Brown and Company, Boston.

    Google Scholar 

  20. Brown, I. R. 1977. Analysis of gene activity in the mammalian brain. Pages 29–46,in Robert, S., Lajtha, A., andGispen, W. (eds.), Mechanisms, Regulation and Special Functions of Protein Synthesis in the Brain, Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  21. Brown, I. R. 1980. Histone synthesis in isolated neuronal perikaryon relative to the postnatal appearance of a short DNA repeat length. Dev. Biol. 80:248–252.

    Google Scholar 

  22. Greenwood, P. D., Silver, J. C., andBrown, I. R. 1981. Analysis of histones associated with neuronal and ggial nuclei exhibiting divergent DNA repeat lengths. J. Neurochem. 37:498–505.

    Google Scholar 

  23. Greenwood, P. D., Silver, J., andBrown, I. R. 1981. Analysis of putative highmobility-group (HMG) proteins in neuronal and glial nuclei from rabbit brain. Neurochem. Res. 6:673–679.

    Google Scholar 

  24. Greenwood, P. D., Heikkila, J. J., andBrown, I. R. 1982. Developmental changes in chromatin organization in rat cerebral hemisphere neurons and analysis of DNA reassociation kinetics. Neurochem. Res. 7:519–533.

    Google Scholar 

  25. Simpson, R. T. 1978. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17:5524–5531.

    Google Scholar 

  26. Lohr, D., Corden, J., Tatchell, R. T., Kovacic, R. T., andVan Holde, K. E. 1977. Comparative subunit structure of HeLa, Yeast and chicken erythrocyte chromatin. Proc. Nat. Acad. Sci. U.S.A. 74:79–83.

    Google Scholar 

  27. Gordon, C. N. 1977. Chromatin behavior during the mitotic cell cycle ofSaccharomyces cerevisiae. J. Cell. Sci. 24:81–93.

    Google Scholar 

  28. Todd, R. D., andGarrard, W. T. 1977. Two-dimensional electrophoretic analysis of polynucleosomes. J. Biol. Chem. 252:4729–4738.

    Google Scholar 

  29. Zongza, U., andMathias, A. P. 1979. The variation with age of the structure of chromatin in three cell types from rat liver. Biochem. J. 179:291–298.

    Google Scholar 

  30. Arceci, R. J., andGross, P. R. 1980. Histone variants and chromatin structure during sea urchin development. Dev. Biol. 80:188–209.

    Google Scholar 

  31. Arceci, R. J., andGross, P. R. 1980. Sea urchin sperm chromatin structure as probed by pancreatic DNase I: Evidence for a novel cutting periodicity. Dev. Biol. 80:210–224.

    Google Scholar 

  32. Stoykova, A. S., Dabeva, M. D., Dimova, R. N., andHadijolov, A. A. 1979. Ribosomal RNA precursors in neuronal and glial rat brain nuclei. J. Neurochem. 33:931–937.

    Google Scholar 

  33. Mizobe, F., Tashior, T., andKurokawa, M. 1974. Characterization of RNA synthesis in vitro in neuror-rich, oligodendroglial and liver nuclei. Eur. J. Biochem. 48:25–33.

    Google Scholar 

  34. Weintraub, H. 1978. The nucleosome repeat length increases during erythropoiesis in the chick. Nucleic Acids Res. 5:1179–1188.

    Google Scholar 

  35. Compton, J. L., Bellard, M., andChambon, P. 1976. Biochemical evidence of variability in the DNA repeat length in the chromatin of higher eukaryotes. Proc. Nat. Acad. Sci. U.S.A. 73:4382–4386.

    Google Scholar 

  36. Gorovsky, M. A., Glover, C., Johmann, A., Eevert, J. B., Mathis, O. J., andSamuelson, M. 1977. Histones and chromatin structure inTetrahymena macro- and micronuclei. Coid Spring Harbor Symp. Quant. Biol. 42:215–226.

    Google Scholar 

  37. Lipps, H. J., andMorris, N. R. 1977. Chromatin structure in the nuclei of the ciliateStylonychia mytilus. Biochem. Biophys. Res. Commun. 74:230–234.

    Google Scholar 

  38. Banks-Schlegel, S. P., andJohnson, T. C. 1975. RNA metabolism in isolated mouse brain nuclei during early postnatal development. J. Neurochem. 24:947–952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenwood, P.D., Brown, I.R. Developmental changes in DNAse I digestibility and RNA template activity of neuronal nuclei relative to the postnatal appearance of a short DNA repeat length. Neurochem Res 7, 965–976 (1982). https://doi.org/10.1007/BF00965136

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965136

Keywords

Navigation