Skip to main content
Log in

Monoamines and metabolites in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alterations in the metabolism of monoamine neurotransmitters have been proposed to be involved in the development of the hepatic encephalopathy (HE) associated with experimental and human liver failure. In order to evaluate this hypothesis, the monoamines and some of their metabolites were measured in homogenates of caudate nucleus (CAU), prefrontal (PFCo) and frontal cortex (FCo) dissected from brains obtained at autopsy from nine cirrhotic patients who had died in hepatic coma and an equal number of control subjects, free from neurological, psychiatric and hepatic disorders, matched for age and time interval from death to freezing of autopsied brain samples. Monoamine measurements were performed by high-performance liquid chromatography with ion-pairing and electrochemical detection after a simple extraction procedure. In all three regions investigated, concentrations of dopamine (DA) were unchanged in cirrhotic patients vs controls while its metabolites, 3-methoxytyramine (3-MT) and homovanillic acid (HVA) were selectively affected i.e.3-MT was found to be increased in CAU, while HVA levels were increased in FCo and CAU. DOPAC was also found to be unchanged in CAU. Noradrenaline (NA) levels were greatly increased in PFCo and FCo of cirrhotic patients but remained unchanged in CAU. No significant differences in the concentrations of either serotonin (5-HT) or of its precursor 5-hydroxytryptophan (5-HTP) were found in any of the three regions studied. However, 5-hydroxyindoleacetic acid (5-HIAA), the major metabolite of 5-HT, was increased in PFCo and CAU of cirrhotic patients. These findings show that selective alterations of catecholamine and 5-HT systems are involved in human HE and therefore, they may play an important role in the pathogenesis of certain neurological symptoms associated with this encephalopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fischer, J. E., and Baldessarini, R. J. 1971. False neurotransmitters and hepatic failure. Lancet 2:75–80.

    PubMed  Google Scholar 

  2. Munro, H. N., Fernstrom, J. D., and Wurtman, R. J. 1975. Insulin, plasma aminoacid imbalance, and hepatic coma. Lancet, 1:722–724.

    PubMed  Google Scholar 

  3. Fischer, J. E., and Baldessarini, R. J. 1976. Pathogenesis and therapy of hepatic coma. Pages 363–397,in Popper, H., Shaffner, F. (eds.), Progress in liver diseases, vol. 5, Grune and Stratton, New York.

    Google Scholar 

  4. Rosen, M. H., Yoshimura, N., Hodgman, J. M., and Fischer, J. E. 1977. Plasma amino acid patterns in hepatic encephalopathy of differing etiology. Gastroenterol. 72:483–487.

    Google Scholar 

  5. Cascino, A., Cangiano, C., Fiaccadori, F., Ghinelli, F., Merli, M., Pelosi, G., Riggio, O., Rossi Fanelli, F., Sacchini, D., Stortoni, M., and Capocaccia, L. 1982. Plasma and cerebrospinal fluid amino acid patterns in hepatic encephalopathy. Digest. Dis. Sc. 27:828–832.

    Google Scholar 

  6. Bergeron, M., Pomier Layrargues, G., and Butterworth, R. F. 1989. Aromatic and branched-chain amino acids in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Metab. Brain Dis.4:169–176.

    PubMed  Google Scholar 

  7. Zanchin, G., Rigotti, P., Dussini, N., Vassanelli, P. and Battistin, L. 1979. Cerebral amino acid leveis and uptake in rats after portocaval anastomosis. II. Regional studies in vitro. J. Neurosci. Res. 4:301–310.

    PubMed  Google Scholar 

  8. Mans, A. M., Biebuyck, J. F., Davis, D. W., and Hawkins, R. A. 1984. Portocaval anastomosis: Brain and plasma metabolite abnormalities and effect of nutritional therapy. J. Neurochem. 43:697–705.

    PubMed  Google Scholar 

  9. Jeppsson, B., James, J. H., Edvards, L. L., and Fischer, J. E. 1985. Relationship of brain glutamine and brain neutral amino acid concentrations after portocaval anastomosis in rats. Eur. J. Clin. Invest. 15:179–187.

    PubMed  Google Scholar 

  10. Record, C. O., Buxton, B., Chase, R. A. Curzon, G., Murray-Lyon, I. M., and Williams, R. 1976. Plasma and brain amino acids in fulminant hepatic failure and their relationship to hepatic encephalopathy. Eur. J. Clin. Invest. 6:387–394.

    PubMed  Google Scholar 

  11. Knott, P. J., and Curzon, G. 1975. Tryptophan and tyrosine disposition and brain tryptophan metabolism in acute carbon tetrachloride poisoning. Biochem. Pharmacol. 24:963–966.

    PubMed  Google Scholar 

  12. Mans, A. M., Saunders, S. J., Kish, R. E., and Biebuyck, J. F. 1979. Correlation of plasma and brain amino acid and putative neurotransmitter alterations during acute hepatic coma in the rat. J. Neurochem. 32:285–292.

    PubMed  Google Scholar 

  13. Jonung, T., Ramzy, A., Herlin, P., James, J. H., Edwards, L., and Fischer, J. E. 1985. Indole amines and amino acids in various brain regions after infusion of branched chain amino acids into hepatectomized rats. Eur. Surg. Res. 17:83–90.

    PubMed  Google Scholar 

  14. Curzon, G., Kantamaneni, B. D., Fernando, J. C., Woods, M. S., and Cavanagh, J. B. 1975. Effects of chronic porto-caval anastomosis on brain tryptophan, tyrosine and 5-hydroxytryptamine. J. Neurochem. 24:1065–1070.

    PubMed  Google Scholar 

  15. Bengtsson F., Gage, F. H., Jeppsson, B., Nobin, A., and Rosengren, E. 1985. Brain monoamine metabolism and behavior in portacaval-shunted rats. Exp. Neurol. 90:21–35.

    PubMed  Google Scholar 

  16. Mans, A. M., and Hawkins, R. A. 1986. Brain monoamines after portacaval anastomosis. Metab. Brain Dis. 1:45–52.

    PubMed  Google Scholar 

  17. Mans, A. M., Consevage, M. W., De Jospeh, M. R., and Hawkins, R. A. 1987. Regional brain monoamines and their metabolites after portacaval shunting. Metab. Brain Dis. 2:183–193.

    PubMed  Google Scholar 

  18. Bugge, M., Bengtsson, F., Nobin, A., Jeppsson, B., Jonung, T., and Herlin, P. 1988. Serotonin metabolism in the rat brain following ammonia administration. Pages 466–461,in Soeters, P. B., Wilson, J. H. P., Meijer, A. J., and Holm, E. (eds.), Advances in ammonia metabolism and hepatic encephalopathy, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  19. Bugge, M., Bengtsson, F., Nobin, A., Jeppsson, B., and Herlin, P. 1987. The turnover of brain monoamines after total hepatectomy in rats infused with branched chain amino acids. World J. Surg. 11:810–817.

    PubMed  Google Scholar 

  20. Dodsworth, J. M., James, J. H., Cummings, M. G., and Fischer, J. E. 1974. Depletion of brain norepinephrine in acute hepatic coma. Surgery, 75:811–820.

    PubMed  Google Scholar 

  21. Siemert, G., Nobin, A., Rosengren, E., and Vang, J. 1978. Neurotransmittor changes in the rat brain after portacaval anastomosis. Eur. Surg. Res. 10:73–85.

    PubMed  Google Scholar 

  22. Kamata, S., Okada, A., Watanabe, T., Kawashima, Y., and Wada, H. 1980. Effects of dietary amino acids on brain amino acids and transmitter amines in rat with a portacaval shunt. J. Neurochem. 35:1190–1199.

    PubMed  Google Scholar 

  23. Cuilleret, G., Pomier Layrargues, G., Pons, F., Cadilhac, J., and Michel, H. 1980. Changes in brain catecholamine levels in human cirrhotic hepatic encephalopathy. Gut, 21:565–569.

    PubMed  Google Scholar 

  24. Herlin, P. M., James, J. H., Nachbauer, C. A., and Fischer, J. E. 1983. Effect of total hepatectomy and administration of branchedchain amino acids on regional norepinephrine, dopamine and amino acids in rat brain. Ann. Surg. 198:172–177.

    PubMed  Google Scholar 

  25. Knell, A. J., Davidson, A. R., Williams, R., Kantamaneni, B. D., and Curzon, G. 1974. Dopamine and serotonin metabolism in hepatic encephalopathy. Brit. Med. J. 1:549–551.

    PubMed  Google Scholar 

  26. Smith, A. R., Rossi-Fanelli, F., Ziparo, V., James, J. H., Perelle, B. A., and Fischer, J. E. 1978. Alterations in plasma and CSF amino acids, amines and metabolites in hepatic coma. Ann. Surg. 187:343–350.

    PubMed  Google Scholar 

  27. Young, S. N., and Lal, S. 1980. CNS tryptamine metabolism in hepatic coma. J. Neural Transm. 47:153–161.

    PubMed  Google Scholar 

  28. De Armond, S. J., Fusco, M. M., and Dewey, M. M. 1976. Structure of human brain: A photographic atlas., 2nd ed., Oxford University Press, New York.

    Google Scholar 

  29. Reader, T. A., and Grondin, L. 1987. Distribution of catecholamines, serotonin, and their major metabolites in the rat cingulate, piriform-entorhinal, somatosensory, and visual cortex: a biochemical survey using high-performance liquid chromatography. Neurochem. Res. 12:1087–1097.

    PubMed  Google Scholar 

  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randell, R. J. 1951. Protein measurement with Folin regent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  31. Joyce, D. 1962. Changes in the 5-hydroxytryptamine content of rat, rabbit and the human brain after death. Brit. J. Pharmacol. 18:370–380.

    PubMed  Google Scholar 

  32. Wiesel, F.-A., and Sedvall, G. 1974. Post-mortal changes of dopamine and homovanillic acid levels in rat striatum as measured by mass fragmentography. Brain Res. 65:547–550.

    PubMed  Google Scholar 

  33. Solviter, R. S., and Connor, J. D. 1977. Postmortem stability of norepinephrine, dopamine, and serotonin in rat brain. J. Neurochem. 28:1129–1131.

    PubMed  Google Scholar 

  34. Carlsson, A., and Winblad, B. 1976. Infuence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. J. Neural Trans. 38:271–276.

    Google Scholar 

  35. Bucht, G., Adolfsson, R., Gottfries, C. G., Roos, B.-E., and Wibblad, B. 1981. Distribution of 5-hydroxytryptamine and 5-hydroxyindolecetic acid in human brain in relation to age, drug influence, agonal status and circadian variation. J. Neural Transm. 51:185–203.

    PubMed  Google Scholar 

  36. Carlsson, A., Svennerholm, L., and Winblad, B. 1980. Seasonal and circadian monoamine variations in human brains examined post mortem. Acta Psychiat. Scand. 61:suppl (280), 75–85.

    Google Scholar 

  37. Gottfries, C.-G., Rosengren, A. M., Rosengren, E. 1965. The occurence of the homovanillic acid in human brain. Acta Pharmacol. Toxicol. 23:23–40.

    Google Scholar 

  38. Adolfsson, R., Gottfries, C.-G., Roos, B.-E., and Winblad, B. 1970. Post-mortem distribution of dopamine and homovanillic acid in human brain, variations related to age, and a review of the literature. J. Neural Transm. 45:81–105.

    Google Scholar 

  39. Korpi, E. R., Goodman, S. I., Kleinman, J. E., and Wyatt, R. J. 1987. Relationship between tryptophan and serotonin concentrations in postmortem human brain. Med. Biol. 65:217–220.

    PubMed  Google Scholar 

  40. Hardy, J. A., Wester, P., Backstrom, I., Gottfries, J., Oreland, L., Stenstrom, A., and Winblad, B. 1987. The regional distribution of dopamine and serotonin uptake and transmitter concentrations in the human brain. Neurochem Int. 10:445–450.

    Google Scholar 

  41. Wester, P., Gottfries, J., and Winblad, B. 1987. Simultaneous liquid chromatographic determination of seventeen of the major monoamine neurotransmitters, precursors and metboolites. II. Assessment of human brain and cerebrospinal fluid concentrations. J. Chromato. 415:275–288.

    Google Scholar 

  42. Gottfries, C. G., Roos, B. E., and Winblad, G. 1974. Determination of 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and homovanillic acid in brain tissue from an autopsy material. Acta Psychiat. Scand. 50:496–507.

    PubMed  Google Scholar 

  43. Cummings, M. G., Soeters, P. B., James, J. H., Keane, J. M., and Fischer, J. E. 1976. Regional brain indoleamine metabolism following chronic portocaval anastomosis in the rat. J. Neurochem. 27:501–509.

    PubMed  Google Scholar 

  44. Jouvet, M. 1972. The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergebn. Physiol. 64:163–307.

    Google Scholar 

  45. Beaubernard, C., Salomon, F., Grange, D., Thangapregassam, M. J., and Bismuth, J. 1977. Experimental hepatic encephalopathy. Changes of the level of wakefulness in the rat with portocaval shunt. Biomedecine, 27:169–171.

    PubMed  Google Scholar 

  46. Kurtz, D., Zenglein, J. P., Imler, M., Girardel, M., Grinspan, G., Peter, B., and Rohmer, F. 1972. Etude du sommeil nocturne au cours de l'encéphalopathie porto-cave. Electroenceph. Clin. Neurophysiol. 33:167–178.

    PubMed  Google Scholar 

  47. Zieve, L. 1982. Hepatic encephalopathy. Pages 433–459,in Schiff, L., and Schiff, E. R. (eds.), Diseases of the liver, Lippincott, Philadelphia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergeron, M., Reader, T.A., Layrargues, G.P. et al. Monoamines and metabolites in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Neurochem Res 14, 853–859 (1989). https://doi.org/10.1007/BF00964814

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964814

Key Words

Navigation