Skip to main content
Log in

A central mechanism of action for taurine: Osmoregulation, vivalent cations, and excitation threshold

  • Comment
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A postulated zinc-taurine complex, with a zinc affinity intermediate between that for glutamic acid dehydrogenase and the calcium binding protein(s), provides an explanation for a series of seemingly unrelated biochemical and physiological effects of taurine. The proposed complex suggests a central mechanism for the action of taurine, such as a bicarbonate and pH dependent influence on calcium and zinc movements (and vice versa), the osmoregulatory role of taurine, and its effect on the excitation threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbeau, A. 1982. Does taurine have clinical significance? Adv. Exp. Med. Biol. 139:513–532.

    Google Scholar 

  2. Barbeau, A., Inoue, N., Tsukada, Y., andButterworth, R. F. 1975. The neuropharmacology of taurine. Life Sci. 17:669–678.

    PubMed  Google Scholar 

  3. Chesney, R. W., Friedman, A. L., Albright, P. W., Jax, D. K., Gingery, R., andGusowski, N. 1982. Studies on the renal handling of taurine: changes during maturation and altered dietary intake. Adv. Exp. Med. Biol. 139:47–63.

    Google Scholar 

  4. Franklin, G. M., Dudzinski, D. S., andCutler, R. W. P. 1975. Amino acid transport into the cerebrospinal fluid of the rat. J. Neurochem. 24:367–372.

    PubMed  Google Scholar 

  5. Fugelli, K., andZacharussen, R. E. 1976. The distribution of taurine, gamma-amminobutyric acid and inorganic ion between plasma and erythrocytes in flounder (platochthep flesus) at different plasma osmolarities. Comp. Biochem. Physiol. 55A:173–177.

    Google Scholar 

  6. Gaull, G. E. 1982. Taurine nutrition in man. Adv. Exp. Biol. Med. 139:89–95.

    Google Scholar 

  7. Goodman, H. O., andConnolly, B. M. 1982. Taurine transport alleles: Dissecting a polygenic complex. Pages 171–180,in Anderson, V. E., Hauser, W. A., Penry, J. K., andSing, C. F. (eds.), Genetic Basis of the Epilepsies, Raven Press, New York.

    Google Scholar 

  8. Gruener, R., Bryant, H., Markovitz, D., Huxtable, R., andBressler, R. 1976. Pages 225–242,in Huxtable, R., andBarbeau, A. (eds.), Taurine, Raven Press, New York.

    Google Scholar 

  9. Hayes, K. C., Carey, R. E., Schmidt, Y. 1975. Retinal degeneration associated with taurine deficienty in the cat. Science 188:949–951.

    PubMed  Google Scholar 

  10. Huxtable, R. J., andPasantes-Morales, H. 1982. Taurine in Nutrition and Neurology. Adv. Exp. Med. Biol. 139:1–537.

    Google Scholar 

  11. Jacobson, J. G., andSmith, L. H. 1968. Biochemistry and physiology of taurine and taurine derivatives. Physiol. Rev. 48:424–511.

    PubMed  Google Scholar 

  12. Juurlink, B. H. J., Schousboe, A., Jørgensen, O. S., Hertz, L. 1981. Induction by hydrocortisone of glutamine synthetase in mouse primary astrocyte cultures. J. Neurochem. 36:136–142.

    PubMed  Google Scholar 

  13. Klee, C. B., andHaiech, J. 1980. Concerted role of calmodulin and calcineurin incalcium regulation. Ann. N.Y. Acad. Sci. 356:43–54.

    PubMed  Google Scholar 

  14. Kuriyama, K. 1982. Are the pharmacological actions of taurine related to its physiological functions? Adv. Exp. Med. Biol. 139:427–446.

    Google Scholar 

  15. Kürzinger, K., andHamprecht, B. 1981. Na+-dependent uptake and release of taurine by neuroblastoma X glioma hybrid cells. J. Neurochem. 37:956–967.

    PubMed  Google Scholar 

  16. Mandel, P. 1982. How are taurine concentrations regulated? Adv. Exp. Med. Biol. 139:403–426.

    Google Scholar 

  17. Moody, W. J. 1983. Intracellular pH regulation and cell excitability (in press).in Jasper H. H., andvan Gelder, N. M. (eds.), Basic Mechanisms of Neuronal Hyperexcitability, Alan R Liss, New York.

    Google Scholar 

  18. Parthe, V. 1981. Histochemical localization of carbonic anhydrase in vertebrate nervous tissue. J. Neurosci. Res. 6:119–131.

    PubMed  Google Scholar 

  19. Pasantes-Morales, H., Arzata, N. E., andCruz, C. 1982. The role of taurine in nervous tissue: its effect on ion fluxes. Adv. Exp. Med. Biol. 139:273–292; Discussion: 435–441.

    Google Scholar 

  20. Pasantes-Morales, H., Ademe, R. M., andQuesada, O. 1981. Protective effect of taurine on the light-induced disruption of isolated frog rod outer segments. J. Neurosci. Res. 6:337–348.

    PubMed  Google Scholar 

  21. Racker, E., Miyamoto, H., Mogerman, J., Simons, J., andO'Neal, S. 1980. Cation transport in reconstituted systems. Ann. N.Y. Acad. Sci. 358, 64–72.

    PubMed  Google Scholar 

  22. Rassin, D. K. 1982. Taurine, cysteinesulfinic acid decarboxylase and glutamic acid in brain. Adv. Exp. Med. Biol. 139:257–268.

    Google Scholar 

  23. Schaffer, S. 1982. Do taurine and its analogs or congeners have actions in common? Adv. Exp. Med. Biol. 139:479–481.

    Google Scholar 

  24. Schousboe, A., Hertz, L., Svenneby, G., andKvamme, E. 1979. Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes. J. Neurochem. 32:943–950.

    PubMed  Google Scholar 

  25. Sturman, J. 1982. Is taurine essential for development? Adv. Exp. Med. Biol. 139:487–512.

    Google Scholar 

  26. Sturman, J. A., Wen, G. Y., Wisniewski, H. M., andHayes, K. C. 1981. Histochemical localization of zinc in the feline tapetum: effect of taurine depletion. Histochemistry 72:341–350.

    PubMed  Google Scholar 

  27. Sturman, J. A., Rassin, D. K., andGaull, G. E. 1977. Taurine in development. Life Sci. 21:1–22.

    PubMed  Google Scholar 

  28. Thursby, M. H., andNevis, A. H. 1974. Anticonvulsant activity of taurine in electrically and osmotically induced seizures in mice and rats. Fed. Proc. 33:1494.

    Google Scholar 

  29. Thurston, J. H., Haubart, R. E., andDirgo, J. A. 1980. Taurine: a role in osmotic regulation of mammalian brain and possible clinical significance. Life Sci. 26:1561–1568.

    PubMed  Google Scholar 

  30. van Gelder, N. M. 1983. Metabolic interactions between neurons and astroglia: Glutamine synthetase, carbonic anhydrase and water balance.in Jasper, H. H., andvan Gelder, N. M. (eds.): Basic Mechanisms of Neuronal Excitability. Alan R Liss, New York (in press).

    Google Scholar 

  31. van Gelder, N. M., Siatitsas, I., Ménini, C., andGloor, P. 1983. Feline generalized penicillin epilepsy: changes of glutamic acid and taurine parallel the progressive increase in excitability of the cortex. Epilepsia (in press).

  32. van Gelder, N. M., andParent, M. 1982. Protein and taurine content of maternal diets during the mouse neonatal period: Permanent effects on cerebellar-brainstem amino acid levels in mature offspring. Neurochem. Res. 7:987–998.

    PubMed  Google Scholar 

  33. van Gelder, N. M. 1981. Glutamic acid in nervous tissue and changes of the taurine content: Its implication in the treatment of epilepsy. Adv. Biochem. Psychopharm. 29:115–125.

    Google Scholar 

  34. van Gelder, N. M. 1976. Rectification of abnormal glutamic acid levels by taurine. Pages 293–302,in Huxtable, R. J., andBarbeau, A. (eds.), Taurine, Rave Press, New York.

    Google Scholar 

  35. van Gelder, N. M., Sherwin, A. L., Sacks, C., andAndermann, F. 1975. Biochemical observations following administration of taurine to patients with epilepsy. Brain Res. 94:297–306.

    PubMed  Google Scholar 

  36. Woodbury, D. M. 1980. Carbonic anhydrase inhibitors. Pages 617–633,in Glaser, G. H., Penry, J. K., andWoodbury, D. M. (eds.), Antiepileptic Drugs: Mechanisms of Action, Raven Press, New York.

    Google Scholar 

  37. Woodbury, D. M., andKemp, J. W. 1977. Initiation, propagation and arrest of seizures. Pages 313–351,in Mrsulja, B. B., Rakic, L. M., Klatzo, I., andSpatz, M. (eds.), Pathophysiology of Cerebral Energy Metabolism, Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Gelder, N.M. A central mechanism of action for taurine: Osmoregulation, vivalent cations, and excitation threshold. Neurochem Res 8, 687–699 (1983). https://doi.org/10.1007/BF00964706

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964706

Keywords

Navigation