Skip to main content
Log in

Cerebral myelinogenesis in theSnell dwarf mouse: Stimulatory effects of GH and T4 restricted to the first 20 days of postnatal life

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We attempted to define the critical time period during early postnatal life when GH and T4 are essential for myelination. We administered bGH and T4 toSnell dwarf mice during the first and second 20 days after birth. Positive results were obtained only when hormones were given during the first 20 days of postnatal life. We observed a distinct increase in brain weight, DNA content, CNPase activity and a remarkably increased level of spontaneous locomotion activity with a diurnal periodicity. Morphological observations of brain sections stained for myelin basic protein (MBP) correlated the biochemical findings. The later administration of hormones was ineffective. Our interpretation is that the administration of exogenous hormones led to increased myelinogenesis through their stimulatory effects on glial proliferation, as evidenced by the increase in cerebral DNA content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balázs, R., Kovacs, S., Cocks, W. A., Johnson, A. L., andEayrs, J. T. 1971. Effect of thyroid hormone on the biochemical maturation of rat brain: postnatal cell proliferation. Brain Res. 25:555–570.

    PubMed  Google Scholar 

  2. Bresnick, E., Williams, S. S., andMossé, H. 1967. Rates of turnover of deoxythymidine kinase and of its template RNA in regenerating and control liver. Cancer Res. 27:469–475.

    PubMed  Google Scholar 

  3. Burton, K. 1956. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62:315–323.

    PubMed  Google Scholar 

  4. Dobbing, J., andSands, J. 1973. Quantitative growth and development of human brain. Arch. Dis. Childhood. 48:757–767.

    Google Scholar 

  5. Fazekas, J. F., Braves, F. B., andAlman, R. W. 1951. Influence of thyroid on cerebral metabolism. Endocrinol. 48:169–174.

    Google Scholar 

  6. Heldin C-H., Wasteson, A., Frykland, L., andWestermark, B. 1981. Somatomedin B: mitogenic activity derived from contaminant epidermal growth factor. Science. 213:1122–1123.

    PubMed  Google Scholar 

  7. Howard, E. 1968. Reduction in size and total DNA of cerebrum and cerebellum in adult mice after corticosterone treatment in infancy. Exp. Neurol. 22:191–208.

    PubMed  Google Scholar 

  8. Kurihara, T., andTsukada, Y. 1967. The regional and subcellular distribution of 2′, 3′-cyclic nucleotide 3′-phosphohydrolase in the central nervous system. J. Neurochem. 14:1167–1174.

    PubMed  Google Scholar 

  9. Laron, Z., andGalatzer, A. 1980. Aspects of brain development in children and adolescents with pituitary growth hormone deficiency. Pages 293–302,in DeWied, D., andVan Keep P. A. (eds.), Hormones and the Brain. MTP Press, Lancaster, U.K.

    Google Scholar 

  10. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein in measurement with folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  11. Maley, G. F., Lorenson, M. G., andMaley, F. 1965. Inhibitors of protein synthesis: effects on the levels of deoxycytidylate deaminase, thymidylate synthetase and thymidine kinase in regenerating rat liver. Biochem. Biophys. Res. Commun. 18:364–370.

    PubMed  Google Scholar 

  12. Mayberry, H. E. M., Van den Brande, J. L., Van Wyk, J. J., andWaddell, W. J. 1971. Early localization of125I-labeled human growth hormone in adrenals and other organs of immature hypophysectomized rats. Endocrinol. 88:1309–1317.

    Google Scholar 

  13. Mirsky, A. E., andRis, H. 1949. Variable and constant components of chromosomes. Nature (London). 163:666–667.

    Google Scholar 

  14. Noguchi, T., Sugisaki, T., Watanabe, M., Tsukada, Y., andTanabe, M. 1980. Brain development and growth factors. Pages 203–230,in Shizume, S., andTakano, K. (eds.), Growth and Growth Factors, Tokyo University Press, Tokyo, Japan.

    Google Scholar 

  15. Noguchi, T., Sugisaki, T., Watanabe, M., Kohsaka, S., andTsukada, Y. 1982 Effects of bovine growth hormone on the retarded cerebral development induced by neonatal hydrocortisone intoxication. J. Neurochem. 38:246–256.

    PubMed  Google Scholar 

  16. Noguchi, T., Sugisaki, T., andTsukada, Y. 1982. Postnatal action of grwoth and thyroid hormones on the retarded cerebral myelinogenesis ofSnell dwarf mice (dw). J. Neurochem. 38:257–263.

    PubMed  Google Scholar 

  17. Noguchi, T., Sugisaki, T., Takamatsu, K., andTsukada, Y. 1982. Factors contributing to the poor myelination in the brain of theSnell dwarf mouse. J. Neurochem. 39:1693–1699.

    PubMed  Google Scholar 

  18. Noguchi, T., Sugisaki, T., Takamatsu, K., andTsukada, Y. 1982. Neurochemical abnormalities ofSnell dwarf mutant mice. Pages 153–170,in Tsukada, Y. (ed.), Genetic Approaches to Developmental Neurobiology, Tokyo University Press, Tokyo, Japan.

    Google Scholar 

  19. Noguchi, T., Sugisaki, T., andTsukada, Y. 1983. Poor myelination in the central nervous system of “Dilute-Lethal Mutant Mice” (d 1/d 1). Exp. Neurol. 79:278–282.

    PubMed  Google Scholar 

  20. Noguchi, T., Sekiguchi, M., Sugisaki, T., Tsukada, Y., andShimai, K. 1983. Faulty development of cortical neurons in theSnell dwarf cerebrum. Develop. Brain Res. 10:125–138.

    Google Scholar 

  21. Roger, L. J., Schanberg, S. M., andFellows, R. E. 1974. Growth and lactogenic hormone stimulation of ornithine decarboxylase in neonatal rat brain. Endocrinol. 95:904–911.

    Google Scholar 

  22. Russell, D. H., Snyder, S. H., andMedina, V. J. 1970. Growth hormone induction of ornithine decarboxylase in rat liver. Endocrinol. 86:1414–1419.

    Google Scholar 

  23. Schapiro, S. 1968. Some physiological, biochemical and behavioral consequences of neonatal hormone administration: cortisone and thyroxine. Gen. Comp. Endocrinol. 10:214–228.

    PubMed  Google Scholar 

  24. Schmidt, G., andThannhauser, S. J. 1945. A method for the determination of desoxyribonucleic acid, ribonucleic acid, and phosphoprotiens in animal tissue. J. Biol. Chem. 161:83–89.

    Google Scholar 

  25. Tsukada, Y., Nagai, K., andSuda, H. 1980. A rapid micro method for 2′, 3′-cyclic nucleotide 3′-phosphohydrolase assay using micro high performance liquid chromatography. J. Neurochem. 34:1019–1022.

    PubMed  Google Scholar 

  26. Westermark, B., Wasteson, A., andUthene, K. 1975. Initiation of DNA synthesis of stationary hyman glia-like cells by a polypeptide fraction from human plasma containing somatomedin activity. Exp. Cell Res. 96:58–62.

    PubMed  Google Scholar 

  27. Winick, M., andGrant, P. 1968. Cellular growth in the organs of the hypopituitary dwarf mouse. Endocrinol. 83:544–547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugisaki, T., Noguchi, T. & Tsukada, Y. Cerebral myelinogenesis in theSnell dwarf mouse: Stimulatory effects of GH and T4 restricted to the first 20 days of postnatal life. Neurochem Res 10, 767–778 (1985). https://doi.org/10.1007/BF00964534

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964534

Keywords

Navigation