Skip to main content
Log in

Stress-induced depression of motor activity correlates with regional changes in brain norepinephrine but not in dopamine

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This experiment examined how inescapable tail shock alters the level of dopamine and norepinephrine within various brain regions of the rat and the relationship of these changes to the depression of motor activity produced by the shock. Following exposure to tail shock that is known to interfere with acquisition of active behavioral tasks, animals were briefly tested for spontaneous motor activity and then sacrificed for neurochemical measures. Norepinephrine and dopamine levels in the frontal cortex, brain stem, striatum, olfactory tubercle, hypothalamus, hippocampus, septum, and amygdala were measured by a sensitive radicenzymatic technique. Exposure to 45 min of tail shock did not alter motor activity significantly, but shock sessions of 60 and 75 min duration produced a marked decrease in motor activity. Levels of dopamine were found to be very little changed in all brain regions studied except for the hypothalamus, in which a substantial rise in dopamine level was observed. Norepinephrine levels, in contrast, fell in many brain regions in response to shock. The fall in norepinephrine levels observed in twi brain regions was significantly correlated with the decline in motor activity (brain stemr=+0.70, hypothalamusr=+0.60) These data suggest that deficits in active motor behavior produced by shock parameters similar to those used in this study may reflect concomitant disturbances of noradrenergic function in specific brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anisman, H., de Catanzero, D., andRemington, G. 1978. Escape performance following exposure to inescapable shock: Deficits in motor response maintenance.J. Exp. Psychol. Anim. Behav. Processes, 4:197–218.

    Google Scholar 

  2. Seligman M. E. P., andMaier, S. F. 1967. Failure to escape traumatic shock.J. Exp. Psychol., 74:1–9.

    PubMed  Google Scholar 

  3. Weiss, J., andGlazer, H. L. 1975. Effects of acute exposure to stressors on subsequent avoidance-escape behavior.Psychosom. Med., 37:499–521.

    PubMed  Google Scholar 

  4. Anisman, H. 1978. Neurochemical changes elicited by stress: Behavioral correlates. Pages 119–172,in Anisman, H. andBignani, G. (eds.)Psychopharmacology of Aversively Motivated Behavior, Plenum Press, New York.

    Google Scholar 

  5. Bliss, E. L., Ailion, J., andZwanziger, J. 1968. Metabolism of norepinephrine, serotonin, and dopamine in rat brain with stress.J. Pharmacol. Exp. Ther., 164:122–134.

    PubMed  Google Scholar 

  6. Maynert, E. W., andLevi, R. 1964. Stress-induced release of brain norepinephrine and its inhibition by drugs.J. Pharmacol. Exp. Ther. 143:90–95.

    PubMed  Google Scholar 

  7. Thierry, A. M., Javoy, F., Glowinski, J., andKety, S. S. 1968. Effect of stress on the metabolism of norepinephrine, dopamine, and serotonin in the central nervous system of the rat. I. Modification of norepinephrine turnover.J. Pharmacol. Exp. Ther. 163:163–171.

    PubMed  Google Scholar 

  8. Stone, E. A. 1975. Stress and catecholamines. Pages 31–72,in Friedhoff, A. J. (ed.),Catecholamines and Behavior, Vol. 2, Plenum Press, New York.

    Google Scholar 

  9. Weiss, J. M., Glazer, H. I., Pohorecky, L. A., Brick, J., andMiller, N. E. 1975. Effects of chronic exposure to stressors in avoidance-escape behavior and on brain norepinephrine.Psychosom. Med., 37:522–534.

    PubMed  Google Scholar 

  10. Anisman, H. 1975. Time-dependent variations in aversively motivated behaviors: Nonassociative effects of cholinergic and catecholaminergic activity.Psychol. Rev. 82:359–385.

    PubMed  Google Scholar 

  11. Weiss, J. M., Glazer, H. I., andPohorecky, L. A. 1976. Coping behavior and neurochemical changes: An alternative explanation for the original “learned helplessness” experiments. Pages 141–173,in Serban, G., andKling, A. (eds.),Animal Models in Human Psychobiology, Plenum Press, New York.

    Google Scholar 

  12. Weiss, J. M., Stone, E. A., andHarrell, N. 1970. Coping behavior and brain norepinephrine level in rats.J. Comp. Physiol. Psychol. 72:153–160.

    PubMed  Google Scholar 

  13. Glazer, H. L., Weiss, J. M., Pohorecky, L. A., andMiller, N. E. 1975. Monoamines as mediators of avoidance-escape behavior.Psychosom. Med., 37:535–543.

    PubMed  Google Scholar 

  14. Moore, K. 1966. Effects of α-methyltryosine on brain catecholamines and conditioned behavior in guinea pigs.Life Sci., 5:55–65.

    PubMed  Google Scholar 

  15. Rech, R. H., Bovys, H. K., andMoore, K. 1966. Alterations in behavior and brain catecholamine levels in rats treated with α-methyltryosine.J. Pharmacol. Exp. Ther. 153:412–419.

    PubMed  Google Scholar 

  16. Seiden, L. S., andPeterson, D. D. 1968. Blockade ofl-dopa reversal of reserpine-induced conditioned avoidance response suppression by disulfiram.J. Pharmacol. Exp. Ther. 163:84–90.

    PubMed  Google Scholar 

  17. Cooper, B., Breese, G., Howard, J., andGrant, L. 1972. Effects of central catecholamine alterations by 6-hydroxydopamine on shuttle box avoidance acquisition.Physiol. Behav. 9:727–731.

    PubMed  Google Scholar 

  18. Roberts, D. C. S., Zis, A. P., andFibiger, H. C. 1975. Ascending catecholamine pathways and amphetamine-induced locomotor activity: Importance of dopamine and apparent non-involvement of norepinephrine.Brain Res. 93:441–454.

    PubMed  Google Scholar 

  19. Simpson, B. A., andIversen, S. D. 1971. Effects of substantia nigra lesions on the locomotor and stereotypy responses to amphetamine.Nature New Biol. 23:30–32.

    Google Scholar 

  20. Thornburg, J. E., andMoore, K. E., 1973. The relative importance of dopaminergic and noradrenergic neuronal systems for the stimulation of locomotor activity induced by amphetamine and other drugs.Neuropharmacology 12:853–866.

    PubMed  Google Scholar 

  21. Corrodi, H., Fuxe, K., andHökfelt, T. 1968. The effect of immobilization stress on the activity of central monoamine neurons.Life Sci. 7:107–112.

    Google Scholar 

  22. Engel, J., Hanson L. C. F., Roos, B.-E., andStronbergsson, L.-E. 1968. Effect of electroshock on dopamine and metabolism in rat brain.Psychopharmacologia 13:140–144.

    PubMed  Google Scholar 

  23. Fuxe, K., andHanson, L. C. F. 1967. Central catecholamine neurons and conditioned avoidance behavior.Psychopharmacologia, 11:439–447.

    PubMed  Google Scholar 

  24. Welch, B. L., andWelch, A. S. 1968. Differential activation by restraint stress of a mechanism to conserve brain catecholamines and serotonin in mice differing in excitability.Nature 218:575–577.

    PubMed  Google Scholar 

  25. DeSchaepdryver, A., Preziosi, P., andScapagnini, U. 1969. Brain monoamines and adrenocortical activation.Br. J. Pharmacol. 35:460–467.

    PubMed  Google Scholar 

  26. Neilson, H. C., andFleming, R. M. 1968. Effects of electroconvulsive shock and prior stress on brain amine levels.Exp. Neurol. 20:21–30.

    PubMed  Google Scholar 

  27. Keim, K. L., andSigg, E. B. 1977. Plasma corticosterone and brain catecholamines in stress: Effect of psychotropic drugs.Pharmacol. Biochem. Behav., 6:79–85.

    PubMed  Google Scholar 

  28. Moyer, J. A., Herrenkohl, C. R., andJacobowitz, D. M. 1977. Effects of stress during pregnancy on catecholamines in discrete brain regions.Brain Res. 121:385–393.

    PubMed  Google Scholar 

  29. Palkovitz, M., Kobayashi, R. M., Kizer, J. S., Jacobowitz, D. M. andKopin, I. J., 1975. Effects of stress on catecholamines and tyrosine hydroxylase activity of individual hypothalamic nuclei.Neuroendocrinology 18:144–153.

    PubMed  Google Scholar 

  30. Giulian, D., andSilverman, G. 1975. Solid-state animal detection system: Its application to open field activity and freezing behavior.Physiol. Behav., 14:109–112.

    PubMed  Google Scholar 

  31. Weiss, J. M. 1971. Effects of coping behavior in different warning signal conditions on stress pathology in rats.J. Comp. Physiol. Psychol., 77:1–13.

    PubMed  Google Scholar 

  32. König, J. F. R., andKlippel, R. A. 1970.The Rat Brain: A Stereotaxic Atlas, Krieger, Huntington, N. Y.

    Google Scholar 

  33. Lindvall, O., Björklund, A., Moore, R., andStenevi, U. 1974. Mesencephalic dopamine neurons projecting to neocortex.Brain Res., 81:325–331.

    PubMed  Google Scholar 

  34. Coyle, J. T., andHenry, D. 1973. Catecholamines in the fetal and newborn rat brain.J. Neurochem., 21:61–67.

    PubMed  Google Scholar 

  35. Fuxe, K., andHökfelt, T. 1976. Catecholamines in the hypothalamus and pituitary gland. Pages 47–96,in Ganong, W. F., andMartini, L. (eds.),Frontiers of Neuroendocrinology, Oxford University Press, Toronto.

    Google Scholar 

  36. Faull, R. L., andLaverty, R. 1969. Changes in dopamine levels in the corpus striatum following lesions of the substantia nigra.Exp. Neurol. 23:332–340.

    PubMed  Google Scholar 

  37. Stock, G., Magnusson, T., andAndén, N.-E. 1973. Increase in brain dopamine after axotomy of treatment with gamma-hydroxybutyric acid due to elimination of nerve impulse flow.Naunyn-Schmiedeberg's Arch. Pharmacol. 278:347–361.

    Google Scholar 

  38. Stone, E. A. 1970. Swim-stress-induced inactivity: Relation to body temperature and brain norepinephrine, and effects ofd-amphetamine.Psychosom. Med., 32:51–59.

    PubMed  Google Scholar 

  39. Stone, E. A. andMendlinger, S. 1974. Effect of intraventricular amines on motor activity of hypothermic rats.Res. Commun. Chem. Pathol. Pharmacol., 7:549–556.

    PubMed  Google Scholar 

  40. Geyer, M. A., Segal, D. S., andMandell, A. J. 1972. Effect of intraventricular dopamine and norepinephrine on motor activity.Physiol. Behav. 8:653–658.

    PubMed  Google Scholar 

  41. Geyer, M. A., Segal, D. S., andMandell, A. J. 1976. Opposite behavioral effects produced by locus coeruleus and median raphe lesions.Neurosci. Abstr. (Sixth Annual Meeting, Society for Neuroscience, Toronto, Canada), p. 488.

  42. Carey, R. J. 1976 Effects of selective forebrain depletions of norepinephrine and serotonin on the activity and food intake effects of amphetamine and fenfluramine.Pharmacol. Biochem. Behav. 5:519–523.

    PubMed  Google Scholar 

  43. Antelman, S. M., andCaggiula, A. R. 1977. Norepinephrine-dopamine interactions and behavior.Science 195:646–653.

    PubMed  Google Scholar 

  44. Andén, N.-E., andGrabowska M. 1976. Pharmacological evidence for a stimulation of dopamine neurons by noradrenaline in the brain.Eur. J. Pharmacol., 39:275–282.

    PubMed  Google Scholar 

  45. Donaldson, I. M., Dolphin, A., Jenner P., Marsden, C. D., andPycock, C. 1976. The roles of noradrenaline and dopamine in contraversive circling behavior seen after unilateral electrolytic lesions of the locus coreuleus.Eur. J. Pharmacol. 39:179–191.

    PubMed  Google Scholar 

  46. Donaldson, I. M., Dolphin, A., Jenner, P., Marsden, C. D., andPycock, C. 1976. Contraversive circling behavior produced by unilateral electrolytic lesions of the ventral noradrenergic bundle mimicking the changes seen with unilateral electrolytic lesions of the locus coeruleus.J. Pharm. Pharmacol. 28:329–331.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, J.M., Bailey, W.H., Pohorecky, L.A. et al. Stress-induced depression of motor activity correlates with regional changes in brain norepinephrine but not in dopamine. Neurochem Res 5, 9–22 (1980). https://doi.org/10.1007/BF00964456

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964456

Keywords

Navigation