Skip to main content
Log in

Characteristics of the norepinephrine-stimulated phosphatidylinositol turnover in rat pineal cell dispersions

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Dispersed rat pineal cells can be used for the study of the phosphatidylinositol effect. The response to (−)-norepinephrine of the incorporation of32Pi into phospholipids is linear with time and cell concentration, stereospecific, and mediated through α1-adrenergic receptors. Na+ in the incubation medium is obligatory for labeling of phosphatidylinositol and phosphatidylcholine by32P. In the absence of K+ incorporation of32P is drastically lowered and no stimulation by norepinephrine occurs. Rb+ can replace K+. Omission of Ca2+ or substitution with Sr2+ preferentially lowers incorporation of radioactivity into phosphatidylcholine. Mg2+ is not required for basal or stimulated labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folch, J., andWoolley, D. W. 1942. Inositol, a constituent of a brain phosphatide. J. Biol. Chem. 142:963–964.

    Google Scholar 

  2. Wells, W. W., andEisenberg, F., Jr. (eds.). 1978. Cyclitols and phosphoinositides. Academic Press, New York.

    Google Scholar 

  3. Michell, R. H. 1975. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415:81–147.

    PubMed  Google Scholar 

  4. Eichberg, J., Shein, H., Schwartz, M., andHauser, G. 1973. Stimulation of32Pi incorporation into phosphatidylinositol and phosphatidylglycerol by catecholamines and β-adrenergic receptor blocking agents in rat pineal organ cultures. J. Biol. Chem. 248:3615–3622.

    PubMed  Google Scholar 

  5. Hauser, G., Shein, H. M., andEichberg, J. 1974. Relationship of α-adrenergic receptors in rat pineal gland to drug-induced stimulation of phospholipid metabolism. Nature 252:482–483.

    PubMed  Google Scholar 

  6. Smith, T. L., Eichberg, J., andHauser, G. 1979. Postsynaptic localization of the alpha-receptor-mediated stimulation of phosphatidylinositol turnover in pineal gland. Life Sciences 24:2179–2184.

    PubMed  Google Scholar 

  7. Nijjar, M. S., Smith, T. L., andHauser, G. 1980. Evidence against dopaminergic and further support for α-adrenergic receptor involvement in the pineal phosphatidylinositol effect. J. Neurochem. 34:813–821.

    PubMed  Google Scholar 

  8. Jones, L. M., andMichell, R. H. 1978. Stimulus-response coupling at α-adrenergic receptors. Biochem. Soc. Transact. 6:673–688.

    Google Scholar 

  9. Hauser, G., andSmith, T. L. 1979. α-Receptor-mediated phosphatidylinositol effect in dispersed pineal cells. Transact. Am. Soc. Neurochem. 10:70.

    Google Scholar 

  10. Smith, T. L., andHauser, G. 1981. The influence of calcium on the norepinephrine-enhanced32P incorporation into phosphatidylinositol in dispersed pineal cells. J. Neurochem. 37:427–435.

    PubMed  Google Scholar 

  11. Wilkinson, M. 1976. Dispersed cell cultures of the rat pineal; growth and morphological differentiation. Can. J. Physiol. Pharmacol. 54:814–821.

    PubMed  Google Scholar 

  12. Rowe, V., Neale, E. A., Avins, L., Guroff, G., andSchrier, B. K. 1977. Pineal gland cells in culture. Morphology, biochemistry, differentiation, and co-culture with sympathetic neurons. Exp. Cell Res. 104:345–356.

    PubMed  Google Scholar 

  13. Hokin, L. E., andHokin, M. R. 1961. Studies on the enzymic mechanism of the sodium pump. Pages 204–218,in Kleinzeller, A., andKotyk, A., (eds.), Membrane Transport and Metabolism, Academic Press, New York.

    Google Scholar 

  14. Brossard, M., andQuastel, J. H. 1963. Cationic and acetylcholine stimulation of phosphate incorporation into phospholipids in rat brain cortex in vitro. Can. J. Biochem. Physiol. 41:1243–1256.

    PubMed  Google Scholar 

  15. Keryer, G., Herman, G., andRossignol, B. 1979. Sodium requirement in secretory processes regulated through muscarinic receptors in rat parotid glands. Its effect on amylase secretion and phosphatidylinositol labelling. FEBS Lett. 102:4–8.

    PubMed  Google Scholar 

  16. Jafferji, S. S., andMichell, R. H. 1976. Investigation of the relationship between cell-surface calcium-ion gating and phosphatidylinositol turnover by comparison of the effects of elevated extracellular potassium ion concentration on ileum smooth muscle and pancreas. Biochem. J. 160:397–399.

    PubMed  Google Scholar 

  17. Skou, J. C. 1965. Enzymatic basis for active transport of Na+ and K+ across cell membranes. Physiol. Rev. 45:596–617.

    PubMed  Google Scholar 

  18. Hauser, G. 1969. Myo-inositol transport in slices of rat kidney cortex. II. Effect of the ionic composition of the medium. Biochim. Biophys. Acta 173:267–276.

    PubMed  Google Scholar 

  19. Tsai, B. S., andLefkowitz, R. J. 1978. Agonist-specific effects of monovalent and divalent cations on adenylate cyclase-coupledalpha adrenergic receptors in rabbit platelets. Mol. Pharmacol. 14:540–548.

    PubMed  Google Scholar 

  20. Jones, L., andMichell, R. 1975. The relationship of calcium to receptor-controlled stimulation of phosphatidylinositol turnover. Effects of acetylcholine, adrenaline, calcium ions, cinchocaine, and a bivalent cation ionophore on rat parotid-gland fragments. Biochem. J. 148:479–485.

    PubMed  Google Scholar 

  21. Oron, Y., Löwe, M., andSelinger, Z. 1975. Incorporation of inorganic [32P]phosphate into rat parotid phosphatidylinositol. Induction through activation ofalpha adrenergic and cholinergic receptors and relation to K+ release. Mol. Pharmacol. 11:79–86.

    PubMed  Google Scholar 

  22. Abdel-Latif, A. A. 1976. Effects of neurotransmitters and neuropharmacological agents on phospholipid metabolism in the rabbit iris muscle. Pages 227–256,In Porcellati, G., Amaducci, L., andGalli, C. (eds.), Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems, Plenum Press, New York.

    Google Scholar 

  23. Billah, M. M., andMichell, R. H. 1979. Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones. Effects of angiotensin, vasopressin, adrenaline, ionophore A23187 and calcium-ion deprivation. Biochem. J. 182:661–668.

    PubMed  Google Scholar 

  24. Tolbert, M. E. M., White, A. C., Aspry, K., Cutts, J., andFain, J. N. 1980. Stimulation by vasopressin and α-catecholamines of phosphatidylinositol formation in isolated rat liver parenchymal cells. J. Biol. Chem. 255:1938–1944.

    PubMed  Google Scholar 

  25. Fisher, S. K., andAgranoff, B. W. 1980. Calcium and the muscarinic synaptosomal phospholipid labeling effect. J. Neurochem. 34:1231–1240.

    PubMed  Google Scholar 

  26. Yandrasitz, J. R., andSegal, S. 1979. The effect of MnCl2 on the basal and acetylcholine-stimulated turnover of phosphatidylinositol in synaptosomes. FEBS Lett. 108:279–282.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauser, G., Smith, T.L. Characteristics of the norepinephrine-stimulated phosphatidylinositol turnover in rat pineal cell dispersions. Neurochem Res 6, 1067–1079 (1981). https://doi.org/10.1007/BF00964413

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964413

Keywords

Navigation