Skip to main content
Log in

Effect of hypoglycemia on the brain free fatty acid level and the uptake of fatty acids by phospholipids

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of hypoglycemia on the uptake of [1-14C]arachidonate and [1-14C]oleate into a synaptosomal and microsomal glycerophospholipids was investigated. In the presence of ATP, Mg2+ and CoA, rat brain synaptosomes and micorsomes catalyze the transfer of arachidonate and oleatc into glycerophospholipids. Arachidonate was mainly incorporated into phosphatidylinositol (PI) and phosphatidylcholine (PC), whereas oleate was incorporated into phosphatidylcholine and phosphatidylethanolamine (PE).

Hypoglycemia was produced by intraperitoneal injection of 10 or 100 units of crystalline insulin per kg body weight. Two hours after injection the blood glucose level decreased to 10–20 mg%. The content of brain phospholipids was slightly decreased but the change was not statistically significant. The level of free fatty acids (FFA) was increased. More pronounced and reproducible changes were found when hypoglycemia was produced by injection of 100 units of insulin per/kg body weight. Changes in brain cortex were similar to those observed in microsomes and synaptosomes. Hypoglycemia affected the incorporation of arachidonic acid into glycerophospholipids of brain membranes. Uptake of [1-14C]arachidonate was decreased selectively by 50% (into phosphatidic acid /PA/) when hypogiycemia was produced by injection of 10 units of insulin per kg body weight. The Higher dose of insulin 100 units per kg body weight produced a 20% inhibition of arachidonate incorporation into synaptosomal PI and a 13% decrease of incorporation into microsomal phosphatidylcholine. Incorporation of [1-14C]oleate into membrane phospholipids was not changed by hypoglycemic insult. It is proposed that the disturbances in fatty acid level, particularly arachidonate, and decreased uptake of arachidonic acid by synaptosomal glycerophospholipids may be responsible for alteration of membrane function and changes of synaptic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, G. Y., andSun, A. Y. 1972. Phospholipids and acyl groups of synaptosomal and myelin membranes isolated from the cerebral cortex of squirrel monkey. Biochim. Biophys. Acta 280:306–315.

    PubMed  Google Scholar 

  2. Corbin, D. R., andSun, G. Y. 1978. Characterization of the enzymic transfer of arachidonoyl groups to 1-acyl phosphoglycerides in mouse synaptosomes fraction. J. Neurochem. 30:77–82.

    PubMed  Google Scholar 

  3. Wojtczak, L. 1976. Effect of long-chain fatty acids and acyl-CoA on mitochondrial permeability transport and energy coupling processes. J. Bioenerget. Biomembr. 8:293–311.

    Google Scholar 

  4. Farias, R. N., Bloj, B., Morero, R. D., Sineriz, F., andTrucco, R. E. 1975. Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition. Biochim. Biophys. Acta 415:231–251.

    PubMed  Google Scholar 

  5. Kimelberg, H. K., andPapahadjopoulos, D. 1972. Phospholipid requirements for Na+ +K+-ATPase activity: head-group specificity and fatty acid fluidity. Biochim. Biophys. Acta 228:277–292.

    Google Scholar 

  6. Bazan, N. G. 1970. Effect of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218:1–10.

    PubMed  Google Scholar 

  7. Bazan, N. G., Bazan, H. E. P., Kennedy, W. G., andJoel, C. D. 1971. Regional distribution and rate of production of free fatty acids in rat brain. J. Neurochem. 18:1387–1393.

    PubMed  Google Scholar 

  8. Strosznajder, J., Gromek, A., andLazarewicz, J. W. 1972. Effect of ischemia on the free fatty acids level in guinea pig brain. (in Polish). Neuropat. Pol. 10:447–455.

    Google Scholar 

  9. Galli, C., andSpagnuolo, C. 1976. The release of brain fatty acids during ischemia in essential fatty acid deficient rats. J. Neurochem. 26:401–404.

    PubMed  Google Scholar 

  10. Marion, J., andWolfe, L. S. 1978. Increase in vivo of unesterified fatty acids prostaglandin F2 but not tromboxane B2 in rat brain during drug induced convulsions. Prostaglandins 16:99–110.

    PubMed  Google Scholar 

  11. Strosznajder, J. 1980. Incorporation of linoleic acid into membrane glycerophospholipids from rat brain submitted to ischemia and hypoxia. Neurochem. Res. 12:1265–1277.

    Google Scholar 

  12. Strosznajder, J., andSun, G. Y. 1981. Effects of acute hypoxia on incorporation of [1-14C] arachidonic acid into glycerophospholipids of rat brain. Neurochem. Res. 6:767–774.

    PubMed  Google Scholar 

  13. Agardh, C. D., Westerberg, E., andSiesjo, B. K. 1980. Severe hypoglycemia leads to accumulation of arachidonic acid in brain tissue. Acta Physiol. Scand. 109:115–116.

    PubMed  Google Scholar 

  14. Agardh, C. D., Chapman, A. G., Nilsson, B., andSiesjo, B. K. 1981. Endogenous substrates utilized by rat brain in severe insulin induced hypoglycemia. J. Neurochem. 36:490–500.

    PubMed  Google Scholar 

  15. Strosznajder, J. 1982. Metabolism of fatty acids by brain membranes after isolation from rats subjected to hypoglycemia. Basic and Clinical Aspects of Molecular Neurobiology. Proceedings of the fourth Meeting of the European Society for Neurochemistry, eds.A. M. Giuffrida Stalla, G. Gombos, G. Benzi, H. S. Bachelard, p. 317.

  16. Knauff, H. G., Mark, D., andMayer, G. 1961. Das Verhalten der Proteine und der serin- und colaminhaltigen Phosphatide des Zentralnervensystems während der Insulinhypoglykämie. Hoppe-Seylers Z Physiol. Chemie 326:227–234.

    Google Scholar 

  17. Knauff, H. G., andBöck, F. 1961. Über die freien Gehirnaminosäuren und das Athanolamine der normalen Ratte sowie über der Verhalten dieser Stoffe nach experimentaller Insulin-Hypoglykämie. J. Neurochem. 6:171–182.

    Google Scholar 

  18. Pappenheimer, J. R., andSetchell, B. P. 1973. Cerebral glucose transport and oxygen consumption in sheep and rabbits. J. Physiol. (London) 233:529–551.

    Google Scholar 

  19. Hinzen, D. H., Becker, P., andMüller, U. 1970. Wirkung von Insulin auf den regionalen Phospholipidstoffwechsel des Kaninchengehirns in vivo Pflügers Arch. 321:1–14.

    Google Scholar 

  20. Twes, J. K., Carter, S. H., andStone, W. E. 1965. Chemical changes in the brain during insulin hypoglycaemia and recovery. J. Neurochem. 12:679–693.

    PubMed  Google Scholar 

  21. Ansell, G. B., andSpanner, S. 1959. The effect of insulin on the formation of phosphorylcholine and phosphorylethanolamine in the brain. J. Neurochem. 4:325–331.

    PubMed  Google Scholar 

  22. De Ropp, R. S., andSnedeker, E. H. 1961. Effect of drugs on amino acid levels in rat brain: hypoglycemic agents. J. Neurochem. 7:128–134.

    Google Scholar 

  23. Schmidt, F. H. 1961. Die enzymatische Bestimmung von Glucose and Fructose nebeneinander. Klin. Wschr. 39:1244–1247.

    PubMed  Google Scholar 

  24. Booth, R. F., andClark, J. B. 1978. A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem. J. 176:365–370.

    PubMed  Google Scholar 

  25. Rafalowska, U., Erecinska, M., andWilson, D. F. 1980. Energy metabolism in rat brain synaptosomes from nembutal anesthetize and nonanesthetized animals. J. Neurochem. 34:1380–1386.

    PubMed  Google Scholar 

  26. Strosznajder, J., andDabrowiecki, Z. 1977. Enzymic synthesis of ethanolamine plasmalogens in the microsomal fraction of rat brain under oxygen deficiency. Bull. Acad. Polon. Sci. Ser. Biol 25:133–139.

    Google Scholar 

  27. Folch, J., Lees, M., andSloane-Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509.

    PubMed  Google Scholar 

  28. Bartlett, G. R. 1959. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466–468.

    PubMed  Google Scholar 

  29. Horrocks, L. A., andSun, G. Y. 1972. Ethanolamine plasmalogens. Pages 223–231,in Rodnight, R., andMarks, N. (eds.). Research Methods in Neurochemistry, Plenum Press, New York.

    Google Scholar 

  30. Dole, V. P., andMeinertz, H. 1960. Micro-determination of long-chain fatty acids in plasma and tissues. J. Biol. Chem. 235:2595–2599.

    PubMed  Google Scholar 

  31. Itaya, K., andUi, H. 1965. Colorimetric determination of free fatty acid in biological fluids. J. Lipid Res. 6:16–21.

    Google Scholar 

  32. Bazan, N. G., andRakowski, H. 1970. Increased levels of brain free fatty acids after electroconvulsive shock. Life Sci. 9:501–507.

    PubMed  Google Scholar 

  33. Bazan, N. G. 1976. 1976. Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Adv. Exp. Med. Biol. 72:317–335.

    PubMed  Google Scholar 

  34. Rodriguez De Turco, E. B., Cascone, G. D., Pediconi, M. F., andBazan, N. G. 1977. Phosphatidate, phosphatidylinositol, diacylglycerol and free fatty acids in the brain following electroschock, anoxia and ischemia. Adv. Exp. Med. Biol. 83:389–396.

    PubMed  Google Scholar 

  35. Strosznajder, J., Foudin, L., Tang, W., andSun, G. Y. 1983. Serum albumin washing specifically enhances arachidonate incorporation into synaptosomal phosphatidylinositols. J. Neurochem. 40:84–90.

    PubMed  Google Scholar 

  36. Irvine, R. F. 1982. How is the level of free arachidonic acid controlled in mammalian cells. Biochem. J. 204:3–16.

    Google Scholar 

  37. Yamashita, S., Nakaya, N., Miki, Y., andNume, S. 1975. Proc. Natl. Acad. Sci. USA 72:600–603.

    PubMed  Google Scholar 

  38. Lands, W. E. M., andSamuelsson, B. 1968. Phospholipid precursors of prostaglandins. Biochem. Biophys. Acta. 164:426–429.

    PubMed  Google Scholar 

  39. Vonkeman, H., andVan Dorp, D. A. 1968. The action of prostaglandin synthetase on 2-arachidonyl-lecithin. Biochim. Biophys. Acta, 164:430–432.

    PubMed  Google Scholar 

  40. Van Den Bosch. 1980. Intracellular phospholipase A. Biochim. Biophys. Acta 604:191–246.

    PubMed  Google Scholar 

  41. Edgar, A. D., Stroszanjder, J., andHorrocks, L. A. 1982. Activation of ethanolamine phospholipase A2 in brain during ischemia. J. Neurochem. 39:1111–1116.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strosznajder, J. Effect of hypoglycemia on the brain free fatty acid level and the uptake of fatty acids by phospholipids. Neurochem Res 9, 465–476 (1984). https://doi.org/10.1007/BF00964373

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964373

Keywords

Navigation