Skip to main content
Log in

α-Methyl-p-tyrosine inhibits the production of free arachidonic acid and diacylglycerols in brain after a single electroconvulsive shock

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A single electroconvulsive shock (ECS) significantly enlarged the free fatty acid (FFA) pool of the mouse brain, arachidonic acid being the most actively released FFA (48% over controls). In animals pretreated with α-methyl-p-tyrosine (α-MT), the endogenous levels of FFA (25 sec after decapitation) were decreased and the effect of ECS was completely abolished. The most pronounced inhibition took place in free arachidonic acid (42% and 52% under controls in nonstimulated and ECS-stimulated mice, respectively). A similar tendency, although lower and less specific than the one taking place in FFA, was observed in mouse brain diacyl-glycerols (DG). In contrast to ECS, α-MT treatment did not affect the marked release of FFA and DG taking place 3 min after decapitation. Taking into account the specific inhibitory action of α-MT on tyrosine hydroxylase activity, the present findings provide experimental in vivo evidence about the relationship between biogenic amines and membrane lipid breakdown during electrical stimulation and suggest an involvement of FFA and DG in neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hinesely, R. K., Norton, J. A., andAprison, M. H. 1968. Serotonin, norepinephrine and 3,4 hydroxyphenylethylamine in rat brain parts following electroconvulsive shock. J. Psychiatr. Res. 6:143–152.

    PubMed  Google Scholar 

  2. Kety, S. S., Javoy, F., Thierry, A. M., Julou, L., andGlowinski, J. 1967. A sustained effect of electroconvulsive shock on norepinephrine in the central nervous system of the rat. Proc. Natl. Acad. Sci. U.S.A. 58:1249–1254.

    PubMed  Google Scholar 

  3. Musacchio, J. M., Julou, L., Kety, S. S., andGlowinski, J. 1969. Increase in rat brain tyrosine hydroxylase activity produced by electroconvulsive shock. Proc. Natl. Acad. Sci. U.S.A. 63:1117–1119.

    PubMed  Google Scholar 

  4. Bazán, N. G., andRakowski, H. 1970. Increased levels of brain free fatty acids after electroconvulsive shock. Life Sci. 9:501–507.

    PubMed  Google Scholar 

  5. Bazán, N. G. 1970. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta. 218:1–10.

    PubMed  Google Scholar 

  6. Bazán, N. G., 1971. Changes in free, fatty acids of brain by drug-induced convulsions, electroshock and anaesthesia. J. Neurochem. 18:1379–1385.

    PubMed  Google Scholar 

  7. Bazán, N. G., Bazán, H. E. P. de, Kennedy, W. G., andJoel, C. D. 1971. Regional distribution and rate of production of free fatty acids in rat brain. J. Neurochem. 18:1387–1393.

    PubMed  Google Scholar 

  8. Spector, S., Sjoerdsma, A., andUdenfriend, S. 1965. Blockade of endogenous norepinephrine synthesis by α-methyl-tyrosine, an inhibitor of tyrosine hydroxylase. J. Pharmacol. Exp. Ther. 147:86–95.

    PubMed  Google Scholar 

  9. Gauna de Rositano, A., Aveldaño de Caldironi, M. I., andBazán, N. G. 1975. Catecholamine-affecting drugs on brain diacylglycerols and free fatty acids. 5th. Int. Meet. of the Int. Soc. for Neurochem. Barcelona, Spain, p. 374.

  10. Folch, J., Lees, M., andSloane-Stanley G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509.

    PubMed  Google Scholar 

  11. Bazán, N. G., andJoel, C. D. 1970. Gradient-thickness thin-layer chromatography for the isolation and analysis of trace amounts of feee fatty acids in large lipid samples. J. Lipid Res. 11:42–47.

    PubMed  Google Scholar 

  12. Aveldaño, M. I., andBazán, N. G. 1975. Rapid production of diacylglycerols enriched in arachidonate and stearate during early brain ischemia. J. Neurochem. 25:919–920.

    PubMed  Google Scholar 

  13. Aveldaño, M. I., andBazán, N. G. 1975. Differential lipid deacylation during brain ischemia in a homeotherm and a poikilotherm. Content and composition of FFA and triacylglycerols. Brain Res. 100:99–110.

    PubMed  Google Scholar 

  14. Bazán, N. G. 1971. Free fatty acid production in cerebral white and grey matter of the squirrel monkey. Lipids 6:211–212.

    PubMed  Google Scholar 

  15. Lust, W. D., Goldberg, N. D., andPassonneau, J. V. 1976. Cyclic nucleotides in murine brain: The temporal relationship of changes induced in adenosine 3′, 5′-monophosphate and guanosine 3′, 5′-monophosphate following maximal electroshock or decapitation. J. Neurochem. 26:5–10.

    PubMed  Google Scholar 

  16. Bazán, N. G. 1976. Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Page 317,in Porcellati, G., Amaducci, L., andGalli, C. (eds.), Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems, Plenum Press, New York.

    Google Scholar 

  17. Wolfe, L. S. 1975. Possible roles of prostaglandins in the nervous system. Chapter I,in Agranoff, B. W., andAprison, M. H. (eds.), Advances in Neurochemistry, Vol. 1, Plenum Press, New York.

    Google Scholar 

  18. Wolfe, L. S., Rostworowski, K., andPappius, H. M. 1976. The endogenous biosynthesis of prostaglandins by brain tissue in vitro. Can. J. Biochem. 54:629–640.

    PubMed  Google Scholar 

  19. Zatz, M., andRotti, R. H. 1975. Electroconvulsive shock raises prostaglandins F in rat cerebral cortex. Biochem. Pharmacol. 24:2101–2103.

    PubMed  Google Scholar 

  20. Wolfe, L. S., Marion, J., andRostworowski, K. 1977. The biosynthesis of prostaglandins and thromboxanes by nervous tissue. Page 465,in Bazán, N. G., Brenner, R. R., andGiusto, N. M. (eds.), Function and Biosynthesis of Lipids, Plenum Press, New York.

    Google Scholar 

  21. Sun, G. Y. 1970. Composition of acyl groups in the neutral glycerides from mouse brain. J. Neurochem. 17:445–446.

    PubMed  Google Scholar 

  22. Keough, K. M. W., MacDonald, G., andThompson, W. 1972. A possible relation between phosphoinositides and the diglyceride pool in rat brain. Biochim. Biophys. Acta 270:337–347.

    PubMed  Google Scholar 

  23. Michell, R. H. 1975. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415:81–147.

    PubMed  Google Scholar 

  24. Banschbach, M. W., andGeison, R. L. 1974. Post-mortem increase in rat cerebral hemisphere diglyceride pool size. J. Neurochem. 23:875–877.

    PubMed  Google Scholar 

  25. Pickard, M. R., andHawthorne, J. N. 1978. The labeling of nerve ending phospho-lipids in guinea-pig brain in vivo and the effect of electrical stimulation on phosphatidylinositol metabolism in prelabelled synaptosomes. J. Neurochem. 30:145–155.

    PubMed  Google Scholar 

  26. Avery, D., andWinokur, G. 1977. The efficacy of electroconvulsive therapy and antidepressants in depression. Biol. Psychiatr. 12:507–523.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Caldironi, M.I.A., Bazán, N.G. α-Methyl-p-tyrosine inhibits the production of free arachidonic acid and diacylglycerols in brain after a single electroconvulsive shock. Neurochem Res 4, 213–221 (1979). https://doi.org/10.1007/BF00964145

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964145

Keywords

Navigation