Skip to main content
Log in

Coronal streamers

III:Energy transport in streamer and interstreamer regions

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The geometrical and dynamical structure of a corona consisting of streamer and interstreamer regions is examined. The present paper is an extension of previous works of this series in that energy transport processes are included in the theoretical framework of the model. Under specified conditions at some reference level above the coronal base, the structure at larger distances is determined by simultaneous integration of the continuity, momentum, and energy equations for each region subject to the condition for a lateral balance of magnetic and gas pressure at all levels. Outward thermal conduction and convection by the solar wind are assumed to be the processes contributing to the energy balance of each region, the magnetic field effectively thermally insulating one region from the other.

Numerical results are presented for situations representative of the solar corona. Regions occupied by streamers are found to have higher densities than their surroundings at all distances from the sun. For a given density at the coronal base, the density at the orbit of earth is lower in both the streamer and interstreamer region than that predicted for radial flow. The density enhancement increases outward to a maximum value at a distance of several solar radii. In addition, beyond a distance of a few radii streamers are characterized by higher expansion velocities and lower temperatures than their immediate surroundings. Similar to the case of radial flow, supersonic solutions exist only for base densities below a certain value, which depends upon the specified base temperature and magnetic field distribution. The general features illustrated by these models are expected to persist in the advent of more sophisticated multi-region models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, J. K., Malitson, H. H., and Stone, R. G.: 1968, Preprint,Solar Phys. 8, 388.

    Google Scholar 

  • Alfvén, H.: 1947,Monthly Notices Roy. Astron. Soc. 107, 211.

    Google Scholar 

  • Altschuler, M. D. and Newkirk, G. A.: 1969,Solar Phys. 9, 131.

    Google Scholar 

  • Brandt, J. C., Wolff, C., and Cassinelli, J. P.: 1969,Astrophys. J. 156, 1117.

    Google Scholar 

  • Chapman, S.: 1954,Astrophys. J. 120, 151.

    Google Scholar 

  • Ferraro, V. C. and Bhatia, V. B.: 1967,Astrophys. J. 147, 220.

    Google Scholar 

  • Hartz, T. R.: 1969,Planetary Space Sci. 17, 267.

    Google Scholar 

  • Hepburn, N.: 1955,Astrophys. J. 122, 445.

    Google Scholar 

  • Hundhausen, A. J.: 1968,Space Sci. Rev. 8, 690.

    Google Scholar 

  • Koomen, M. J., Seal, R. T., and Tousey, R.: 1969, Paper presented at the Special Meeting on Solar Astronomy of the American Astronomical Society, Pasadena, Calif.

  • Kuperus, M.: 1969,Space Sci. Rev. 9, 713.

    Google Scholar 

  • Michard, R.: 1954,Ann. Astrophys. 17, 429.

    Google Scholar 

  • Modisette, J. L.: 1967,J. Geophys. Res. 72, 1521.

    Google Scholar 

  • Newkirk, G. A.: 1967,Ann. Rev. Astron. Astrophys., Vol. V, Annual Reviews Inc.

  • Newkirk, G. A. and Altschuler, M. D.: 1970,Solar Phys. 13, 131.

    Google Scholar 

  • Newkirk, G. A., Altschuler, M. D., and Harvey, J. W.: 1968, inStructure and Development of Solar Active Regions (ed. by K. O. Kiepenheuer),IAU Symp. 35, D. Reidel Publ. Co., Dordrecht, Holland, p. 379.

    Google Scholar 

  • Noble, L. M. and Scarf, F. L.: 1963,Astrophys. J. 138, 1169.

    Google Scholar 

  • Osterbrock, D. E.: 1961,Astrophys. J. 134, 347.

    Google Scholar 

  • Parker, E. N.: 1960,Astrophys. J. 132, 821.

    Google Scholar 

  • Parker, E. N.: 1964,Astrophys. J. 139, 93.

    Google Scholar 

  • Parker, E. N.: 1965,Astrophys. J. 141, 1463.

    Google Scholar 

  • Pneuman, G. W.: 1966,Astrophys. J. 145, 800.

    Google Scholar 

  • Pneuman, G. W.: 1968,Solar Phys. 3, 578.

    Google Scholar 

  • Pneuman, G. W.: 1969,Solar Phys. 6, 255.

    Google Scholar 

  • Ramberg, J. M.:Stockholms Obs. Ann. 17, 1951.

  • Saito, K.: 1959,Publ. Astron. Soc. Japan 11, 234.

    Google Scholar 

  • Saito, K. and Billings, D. E.: 1964,Astrophys. J. 140, 760.

    Google Scholar 

  • Saito, K. and Owaki, N.: 1967,Publ. Astron. Soc. Japan 19, 535.

    Google Scholar 

  • Slysh, V. I.: 1967,Astron. Zh. 44, 487 (Soviet Astron. 11, 389).

    Google Scholar 

  • Waldmeier, M.: 1963,Z. Astrophys. 56, 291.

    Google Scholar 

  • Weber, E. J. and Davis, L.: 1967,Astrophys. J. 148, 217.

    Google Scholar 

  • Whang, Y. C., Liu, C. K., and Chang, C. C.: 1966,Astrophys. J. 145, 255.

    Google Scholar 

  • Wilcox, J. M.: 1968,Space Sci. Rev. 8, 258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pneuman, G.W., Kopp, R.A. Coronal streamers. Sol Phys 13, 176–193 (1970). https://doi.org/10.1007/BF00963950

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00963950

Keywords

Navigation