Skip to main content
Log in

A model of selective processing of auditory-nerve inputs by stellate cells of the antero-ventral cochlear nucleus

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Stellate cells in the cat antero-ventral cochlear nucleus (AVCN) maintain a robust rate-place representation of vowel spectra over a wide range of stimulus levels. This rate-place representation resembles that of low threshold, high spontaneous rate (SR) auditory nerve fibers (ANFs)at low stimulus levels, and that of high threshold, lowmedium SR ANFsat high stimulus levels. One hypothesis accounting for this phenomenon is that AVCN stellate cells selectively process inputs from different SR population of ANFs in a level-dependent fashion. In this paper, we investigate a neural mechanism that can support selective processing of ANF inputs by stellate cells. We study a physiologically detailed compartmental model of stellate cells. The model reproduces PST histograms and rate-versus-level functions measured in real cells. These results indicate that simple and plausible distribution patterns of excitatory and inhibitory inputs within the stellate cell dendritic tree can support level dependent selective processing. Factors affecting selective processing are identified. This study thus represents a first step towards the development of a computational model of the AVCN stellate cell receptive field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. C. 1983. Multipolar cells in the ventral cochlear nucleus project to the dorsal cochlear nucleus and the inferior colliculus. Neurosci. Lett., 37:205–208.

    PubMed  Google Scholar 

  • Adams, J. C. and Warr, W. B. 1976. Origins of axons in the cat's acoustic striae determined by injection of horseradish peroxidase into several tracts. J. Comp. Neurol., 170:107–121.

    PubMed  Google Scholar 

  • Banks, M. I. and Sachs, M. B. 1991. Regularity analysis in a compartmental model of chopper units in the anteroventral cochlear nucleus. J. Neurophysiol., 65(3):606–629.

    PubMed  Google Scholar 

  • Barta, P. E. and Young, E. D. 1986. Rate responses of auditory nerve fibers to tones in noise near masked threshold. J. Acoust. Soc. Am., 79:426–442.

    PubMed  Google Scholar 

  • Berglund, A. M., Jacob, K., and Liberman, M. 1993. Morphometry of synaptic vesicles in anteroventral cochlear nucleus: Some correlations with terminal origins. In 16th Midwinter Research Meeting, Association for Research in Otolaryngology, St. Petersburg Beach, FA.

    Google Scholar 

  • Blackburn, C. C. and Sachs, M. B. 1989. Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. J. Neurophysiol., 62(6):1303–1329.

    PubMed  Google Scholar 

  • Blackburn, C. C. and Sachs, M. B. 1990. The representations of the steady-state vowel sound /e/ in the discharge pattern of cat anteroventral cochlear nucleus neurons. J. Neurophysiol., 63(5):1191–1212.

    PubMed  Google Scholar 

  • Blackburn, C. C. and Sachs, M. B. 1992. Effects of off-bf tones on responses of chopper units in ventral cochlear nucleus i. regularity and temporal adaptation patterns. J. Neurophysiol., 68(1):124–143.

    PubMed  Google Scholar 

  • Bourk, T. R. 1976. Electrical responses of neural units in the anteroventral cochlear nucleus of the cat. PhD thesis, Massachusetts Institute of Technology. Cambridge, MA.

    Google Scholar 

  • Cant, N. B. 1981. The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat. Neuroscience, 6:2643–2655.

    PubMed  Google Scholar 

  • Cant, N. B. and Morest, D. K. 1978. Axons from non-cochlear sources in the anteroventral cochlear nucleus of the cat: A study with the rapid golgi method. Neuroscience, 3:1003–1029.

    PubMed  Google Scholar 

  • Cant, N. B. and Morest, D. K. 1979. Organization oe the neurons in the anterior division of the anteroventral cochlear nucleus of the cat: Light microscopic observations. Neuroscience, 4:1909–1923.

    PubMed  Google Scholar 

  • Costalupes, J. A. 1985. Representation of tones in noise in the responses of auditory nerve fibers in cats: I. comparison with detection threshold. J. Neurosci., 5:3261–3269.

    PubMed  Google Scholar 

  • Fekete, D. M., Rouiller, E. M., Liberman, M. C., and Ryugo, D. K. 1982. The central projections of intracellularly labeled auditory nerve fibers in cats. J. Comp. Neurol., 229:432–450.

    Google Scholar 

  • Gaumond, R. P., Molnar, C. E., and Kim, D. O. 1982. Stimulus and recovery dependence of cat cochlear nerve fiber spike discharge probability. J. Neurophysiol., 48:856–873.

    PubMed  Google Scholar 

  • Johnson, D. and Kiang, N. Y. S. 1976. Analysis of discharges recorded simultaneously from pairs of auditory nerve fibers. Biophys. J. 16:719–734.

    PubMed  Google Scholar 

  • Johnson, D. H. and Swami, A. 1983. The transmission of signals by auditory-nerve fiber discharge patterns. J. Acoust. Soc. Am., 74:493–501.

    PubMed  Google Scholar 

  • Kiang, N. Y. S. and Moxon, E. C. 1974. Tails of tuning curves of auditory nerve fibers. J. Acoust. Soc. Am., 55:620–630.

    PubMed  Google Scholar 

  • Koch, C. and Poggio, T. 1986. Biophysics of computation: Neurons, synapses, and membranes. In Edelman, G. E., Gall, W. E., and Cowan, W. M., editors, Synaptic Function, New York. John Wiley & Sons.

    Google Scholar 

  • Koch, C., Poggio, T., and Torre, V. 1982. Retinal ganglion cells: A functional interpretation of dendritic morphology. Phil. Trans. R. Soc. Lond. B, 227:227–264.

    Google Scholar 

  • Li, J. 1991. Estimation of the recovery of discharge probability in cat auditory-nerve spike trains and computer simulations. PhD thesis, The Johns Hopkins University, Department of Biomedical Engineering. Baltimore, MD.

    Google Scholar 

  • Liberman, M. C. 1991. Central projections of auditory-nerve fibers of differing spontaneous rate. i. anteroventral cochlear nucleus. J. Comp. Neurol., 313:240–258.

    PubMed  Google Scholar 

  • Lorente de No, R. 1981. The Primary Acoustic Nuclei. Raven, New York.

    Google Scholar 

  • Manis, P. B. and Marx, S. O. 1991. Outward currents in isolated ventral cochlear nucleus neurons. J. Neurosci., 11(9):2865–2880.

    PubMed  Google Scholar 

  • Merzenich, M. M., Knight, P. L., and Roth, G. L. 1975. Representation of the cochlea within primary auditory cortex in the cat. J. Neurophysiol., 38:231–249.

    PubMed  Google Scholar 

  • Neti, C. and Young, E. D. 1992. Neural network models of sound localization based on directional filtering by the pinna. J. Acoust. Soc. Am., 92(6):3140–3156.

    PubMed  Google Scholar 

  • Oertel, D. 1983. Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J. Neurosci., 3:2043–2053.

    PubMed  Google Scholar 

  • Oertel, D., Wu, S. H., and Hirsch, J. A. 1988. Electrical characteristics of cells and neuronal circuitry in the cochlear nuclei studied with intracellular recording from brain slices. In Edelman, G. M., Gall, W. E., and Cowan, W. M., editors, Auditory Function, New York. Wiley.

    Google Scholar 

  • Osen, K. K. 1969. Cytoarchitecture of the cochlear nuclei in the cat. J. Comp. Neurol., 136:453–484.

    PubMed  Google Scholar 

  • Osen, K. K. 1970. Course and termination of the primary afferents in the cochlear nuclei of the cat: An experimental study. Arch. Ital. Biol., 108:21–51.

    PubMed  Google Scholar 

  • Pickles, J. O. 1988. An Introduction to the Physiology of Hearing. Academic Press, London.

    Google Scholar 

  • Rall, W. 1964. Theoretical significance of dendritic trees for neuronal input-output relations. In Reiss, R. F., editor, Neural Theory and Modeling, pages 73–97, Stanford, CA. Stanford University Press.

    Google Scholar 

  • Rall, W. 1977. Core conductor theory and cable properties of neurons. In Handbook of Physiology: The Nervous System. Cellular Biology of Neurons, volume 1, chapter 3, pages 39–97. Am. Physiol. Soc., Bethesda, MD.

    Google Scholar 

  • Rhode, W. S., Oertel, D., and Smith, P. H. 1983. Physiological response properties of cells labeled intracellularly with horseradish peroxidase in the cat ventral cochlear nucleus. J. Comp. Neurol., 213:448–463.

    PubMed  Google Scholar 

  • Rothman, J. S. 1991. An electrophysiological model of bushy cells of the anteroventral cochlear nucleus. Master's thesis, The Johns Hopkins University, Department of Biomedical Engineering. Baltimore, MD.

    Google Scholar 

  • Rouiller, E. M., Cronin-Schreiber, R., Fekete, D. M., and Ryugo, D. K. 1986. The central projections of intracellularly labeled auditory nerve fibers in the cat: An analysis of terminal morphology. J. Comp. Neurol., 249:261–278.

    PubMed  Google Scholar 

  • Rouiller, E. M. and Ryugo, D. K. 1984. Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. J. Comp. Neurol., 225:167–186.

    PubMed  Google Scholar 

  • Ryugo, D. K. and Rouiller, E. M. 1988. Central projections of intracellularly labeled auditory nerve fibers in cats: Morphometric correlations with physiological properties. J. Comp. Neurol., 271:130–142.

    PubMed  Google Scholar 

  • Ryugo, D. K., Wright, D. D., and Pongstaporn, T. 1993. Ultrastructural analysis of synaptic endings of auditory nerve fibers in cats: Correlations with spontaneous discharge rate. In Merchan, M., Juiz, J. M., Godfrey, D. A., and Mugnaini, E., editors, The Mammalian Cochlear Nuclei: Organization and Function, pages 65–74. Plenum Press.

  • Sachs, M. B. and Abbas, P. J. 1974. Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J. Acoust. Soc. Am., 56:1835–1847.

    PubMed  Google Scholar 

  • Sachs, M. B., Winslow, R. L., and Sokolowski, B. H. A. 1989. A computational model for rate-level functions from cat auditory-nerve fibers. Hearing Res., 41:61–70.

    Google Scholar 

  • Sachs, M. B. and Young, E. D. 1979. Encoding of steady-state vowels in the auditory-nerve: Representation in terms of discharge rate. J. Acoust. Soc. Am., 66:470–479.

    PubMed  Google Scholar 

  • Shofner, W. P. and Sachs, M. B. 1986. Representation of a low-frequency tone in the discharge rate of populations of auditory-nerve fibers. Hearing Res., 21:91–95.

    Google Scholar 

  • Shofner, W. P. and Young, E. D. 1985. Excitatory/inhibitory response types in the cochlear nucleus: Relationships to discharge patterns and responses to electrical stimulation of the auditory nerve. J. Neurophysiol., 54(4):917–939.

    PubMed  Google Scholar 

  • Smith, P. H. and Rhode, W. S. 1989. Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J. Comparative Neurology, 282:595–616.

    Google Scholar 

  • Softky, W. R. and Koch, C. 1992. Cortical cells should fire regularly, but do not. Neural Computation, 4:643–646.

    Google Scholar 

  • Softky, W. R. and Koch, C. 1993. The highly irregular firing of cortical cells is inconsistent with temporal integration of random epsps. J. Neuroscience, 13:334–350.

    Google Scholar 

  • Wang, X. 1991. Neural encoding of single-formant stimuli in auditory-nerve and anteroventral cochlear nucleus of the cat. PhD thesis, The Johns Hopkins University, Department of Biomedical Engineering. Baltimore, MD.

    Google Scholar 

  • White, J. A. 1990. Electrotonic models of stellate cells of the ventral cochlear nucleus. PhD thesis, The Johns Hopkins University, Department of Biomedical Engineering. Baltimore, MD.

    Google Scholar 

  • Winslow, R. L., Barta, P. E., and Sachs, M. B. 1987. Rate coding in the auditory nerve. In Watson, C. S. and Yost, W., editors, Auditory Processing of Complex Sounds, pages 212–224. Lawrence Erlbaum Associates.

  • Wu, S. H. and Oertel, D. 1984. Intracellular injection with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus. J. Neurosci., 4:1577–1588.

    PubMed  Google Scholar 

  • Wu, S. H. and Oertel, D. 1986. Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine. J. Neurosci., 6:2691–2706.

    PubMed  Google Scholar 

  • Young, E. and Sachs, M. B. 1979. Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J. Acoust. Soc. Am., 66:1381–1403.

    PubMed  Google Scholar 

  • Young, E. D., Robert, J. M., and Shofner, W. P. 1988a. Regularity and latency of units in the ventral cochlear nucleus: Implications for unit classification and generation of response properties. J. Neurophysiol., 60:1–29.

    PubMed  Google Scholar 

  • Young, E. D. and Sachs, M. B. 1988. Interactions of auditory nerve fibers and ventral cochlear nucleus cells studied with cross-correlation. In 18th Annual Meeting, Society for Neuroscience Abstracts, Toronto, Canada.

    Google Scholar 

  • Young, E. D., Shofner, W. P., White, J. A., Robert, J. M., and Voigt, H. F. 1988b. Response properties of cochlear nucleus neurons in relationship to physiological mechanisms. In Edelman, G. M., Gall, W. E., and Cowan, W. M., editors, Auditory Function, pages 277–312, New York. Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying -Cheng Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, Y.C., Winslow, R.L. & Sachs, M.B. A model of selective processing of auditory-nerve inputs by stellate cells of the antero-ventral cochlear nucleus. J Comput Neurosci 1, 167–194 (1994). https://doi.org/10.1007/BF00961733

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00961733

Keywords

Navigation