Skip to main content
Log in

Condensation and isothermal water transfer in cement mortar Part I — Pore size distribution, equilibrium water condensation and imbibition

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The pore size distribution of cement mortar is studied in relation to water sorption experiments with the help of mercury intrusion and nitrogen sorption. The importance of adsorbed water is pointed out. Isothermal imbibition experiments at four temperatures are presented. The temperature-dependence of the mass transfer coefficients is compared to the one predicted by the classical model. Significant discrepancies are noticed.

On the basis of the knowledge of the pore structure, a modelisation of the transfer process at moderate water content is proposed. It particularly takes into account Knudsen's vapor diffusion and effects of the presence of a discontinuous capillary phase interacting with vapor diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D o :

coefficient of free diffusion of the water vapor in air

D r :

coefficient of diffusion of vapor in the presence of a solid matrix (see eq. 16)

D h v:

coefficient of pure vapor diffusion of the medium

D′ h v:

coefficient of vapor diffusion of the medium in the presence of a dis continuous capillary phase

D θ :

(with subscript L or V, or not) coefficient of mass transfer (see eq. 14)

e a :

thickness of the adsorbed layer

h :

relative humidity of the gaseous phase (h =pv/pvs =ϱv/ϱvs)

J :

(with subscript L or V, or not) mass flux

K L :

permeability (see Equation 11)

l m :

mean free path of water molecules in air

ln:

natural logarithm

log:

logarithm to the base ten

M :

molecular weight of water

p c :

capillary pressure

p v :

partial pressure of water vapor

pvs:

pressure of saturated water vapor

r :

radius of a cylindrical pore

R :

gas constant

ℛ:

radius of curvature of a capillary interface

S 0 :

total area of pores per unit volume

S(r) :

area of pores of radius larger thanr per unit volume

T :

temperature

t :

time

x :

distance from origin

γ, γ r :

shape factor of the capillary phase (of a class of pores)

δ r :

equivalent coefficient of diffusion of pores filled with capillary water (see eq. 18 and 19)

Δη r :

volumic fraction of a class of pores

η 0 :

total porosity

η(r) :

volume of pores of radius less thanr per unit volume

θ :

volumetric water content

μ :

dynamic viscosity of liquid water

v :

kinematic viscosity of water

ϱ V :

mass density of vapor

ϱ VS :

mass density of saturated water vapor

ϱ l :

mass density of liquid water

σ :

surface tension coefficient

τ :

tortuosity factor

Φ:

matric potential

L:

liquid

V:

vapor

References

  • Barrett, E. P., Joyner, L. G., and Halenda, P. H., 1951,J. Amer. Chem. Soc. 73, 373.

    Google Scholar 

  • Bhatnagar, P. L., Gross, E. P., and Krook, M., 1954, A model for collision processes in gases.Phys. Rev. 94, 511–525.

    Google Scholar 

  • Bonnetain, L. and Ginoux, J. L., 1982, Influence de la surface externe aux pores sur la détermination du spectre de meso-adsorption à partir des isothermes d'adsorption, in J. Rouquerol and K. S. W. Sing (eds.),Adsorption at the Gas-Solid and Liquid-Solid Interface, Elsevier, Amsterdam.

    Google Scholar 

  • Bradley, R. S., 1936, Polymolecular adsorbed films,J. Chem. Soc. PartI, p. 1467, PartII, p. 1799.

  • Brunauer, S., Emmett, P. H., and Teller, E., 1938, Adsorption of gases in multimolecular layers,J. Amer. Chem. Soc. 60, 309.

    Google Scholar 

  • Chapman, S. and Cowling, T. G., 1970,The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, London.

    Google Scholar 

  • Constantz, J., 1982, Temperature dependence of unsaturated hydraulic conductivity of two soils,Soil Sci. Soc. Am. J. 46, 466–470.

    Google Scholar 

  • Crausse, P., Bacon, G., and Bories, S., 1981, Etude fondamentale des transferts couplés chaleurmasse en milieu poreux.Int. J. Heat Mass Transfer 24, 991–1004.

    Google Scholar 

  • Daian, J. F., 1986, Processus de condensation et de transfert d'eau dans un matériau méso et macroporeux. Etude expérimentale du mortier de ciment. Thèse de Doctorat, Université Scientifique, Technique et Médicale de Grenoble.

  • De Vries, D. A., 1952, The thermal conductivity of granular materials, Annex 1952, 1.Bull. Inst. Intern. du Froid, 115–131.

  • De Vries, D. A., 1958, Simultaneous transfert of heat and moisture in porous media.Trans. Am. Geo. Union 39, 909–916.

    Google Scholar 

  • De Vries, D. A., 1962, Thermal properties of soils, in W. R. Van Wijk (ed.),Physics of Plant Environment, North-Holland, Amsterdam, 2nd edn., pp. 210–235.

    Google Scholar 

  • De Vries, D. A., 1972, Heat Transfert in soil, inHeat and Mass Transfer in the Biosphere. John Wiley, New York.

    Google Scholar 

  • De Vries, D. A. and Kruger, A. J., 1966, On the value of the diffusion coefficient of water vapour in air,Colloques Intern, du CNRS n∘ 160: Phénomènes de transport avec changement de phase dans les milieux poreus ou colloïdaux. Paris 18–20 avril 1966, Editions du CNRS, pp. 61–72.

  • Dullien, F. A. L., 1979,Porous Media: Fluid Transport and Pore Structure, Academic Press, New York.

    Google Scholar 

  • Fagerlund, G., 1973, Determination of the specific surface by the BET method,Materials and Structures 6, 33, 239–245.

    Google Scholar 

  • Gertis, K. and Wolfseher, U., 1976, Isothermer Gastransport in porosen Stoffen aus Gas kinetischer Sicht,Deutscher Ausschuss für Stahlbeton, 258, 36–62.

    Google Scholar 

  • Gertis, K. and Kiessl, K., 1976, Isothermer Feuchte transport in porosen Baustoffen,Deutscher Ausschuss für Stahlbeton, 258, 85–110.

    Google Scholar 

  • Grad, H., 1952, The profile of a steady plane shock wave,Commun. Pure Appl. Math. 5, 257–300.

    Google Scholar 

  • Gregg, S. J. and Sing, K. S. W., 1982,Adsorption, Surface Area and Porosity, 2nd edn. Academic Press, New York.

    Google Scholar 

  • Grismer, M. E., McWhorther, D. B., and Klute, A., 1986, Monitoring water and salt movement in soils at low solution contents.Soil Sci. 141, 163.

    Google Scholar 

  • Halsey, G., 1948, Physical adsorption on non-uniform surfaces.J. Chem. Phys. 16, 10, 931–937.

    Google Scholar 

  • Haridasan, M. and Jensen, R. D., 1972, Effect of temperature on pressure heat-water content relationship and conductivity of two soils,Soil Sci. Soc. Amer. Proc. 36, 703–708.

    Google Scholar 

  • Hillel, D., 1980,Applications of Soil Physics, Academic Press, New York.

    Google Scholar 

  • Hopmans, J. W. and Dane, J. H., 1986, Temperature dependence of soil hydraulic properties,Soil Sci. Soc. Am. J. 50, 4–9.

    Google Scholar 

  • Jackson, R. D., 1964–65, Water vapor diffusion in relatively dry soils (I to IV),Soil Sci. Soc. Am. Proc. 28, 172, 464, 466,29, 144.

    Google Scholar 

  • Mason, E. A., Malinauskas, A. P., Evans III, R. B., 1967, Flow and diffusion of gases in porous media,J. Chem. Phys. 46, 3199–3216.

    Google Scholar 

  • Perrin, B., Foures, J. C., and Javelas, R., 1983, Détermination du coefficient de diffusion isotherme de l'humidité dans des matériaux de construction,Materials and Structure,16, 91, 27–33.

    Google Scholar 

  • Philip, J. R. and De Vries, D. A., 1957, Moisture movement in porous materials under temperature gradients,Trans. Am. Geoph. Union 38, 222–232.

    Google Scholar 

  • Powers, T. C., 1962, inProc. 4th Int. Symposium on the Chemistry of Cement, Natl. Bureau Stds, Washington,2, 577.

    Google Scholar 

  • Present, R. D., 1958,Kinetic Theory of Gases, McGraw-Hill, New York.

    Google Scholar 

  • Rahi, G. S. and Jensen, R. D., 1975, Effect of temperature on soil water diffusivity,Geoderma 14, 115–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daian, JF. Condensation and isothermal water transfer in cement mortar Part I — Pore size distribution, equilibrium water condensation and imbibition. Transp Porous Med 3, 563–589 (1988). https://doi.org/10.1007/BF00959103

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00959103

Key Words

Navigation