Skip to main content
Log in

Chalcone synthases from spinach (Spinacia oleracea L.)

II. Immunofluorescence and immunogold localization

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The distribution of the two chalcone synthases in leaves ofSpinacia oleracea L. was studied at both the tissue and the subcellular level using immunofluorescence and immunogold techniques. Neither technique differentiated between the two enzyme forms. The chalcone synthases are located in the upper and the lower epidermis and to a minor extent in the subepidermal layers. Traces of the two enzyme forms may be present in the residual mesophyll. This distribution is independent of leaf age. A similar distribution of chalcone synthase among tissues was observed in parsley, pea, and bean. Chalcone synthase is also present in guard cells. The spinach chalcone synthases are cytosolic enzymes, and are not associated with tonoplast or endoplasmic reticulum. A small fraction of the chalcone synthases is located in the stroma of the chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FITC:

Fluorescein isothiocyanate

IgG:

immunoglobulin G

PBS:

Phosphate-buffered saline

References

  • Aritomi, M., Komori, T., Kawasaki, T. (1986) Flavonol glycosides in leaves ofSpinacia oleracea. Phytochemistry25, 231–234

    Google Scholar 

  • Beerhues, L., Wiermann, R. (1988) Chalcone synthases from spinach (Spinacia oleracea L.). I. Purification, peptide patterns, and immunological properties of different forms. Planta173, 532–543

    Google Scholar 

  • Bitsch, A., Trihbes, R., Schultz, G. (1984) Compartmentation of phenylacetic and cinnamic acid synthesis in spinach. Physiol. Plant.61, 617–621

    Google Scholar 

  • Brisson, L., Vacha, W.E.K., Ibrahim, R.K. (1986) Localization of partially methylated flavonol glucosides inChrysosplenium americanum. II. Immunofluorescence. Plant Sci.44, 175–181

    Google Scholar 

  • Caldwell, M.M., Robberecht, R., Flint, S.D. (1983) Internal filters: Prospects for UV-acclimation in higher plants. Physiol. Plant.58, 445–450

    Google Scholar 

  • Charriere-Ladreix, Y., Tissut, M. (1981) Foliar flavonoid distribution duringSpinacia chloroplast isolation. Planta151, 309–313

    Google Scholar 

  • Charriere-Ladreix, Y., Douce, R., Joyard, J. (1981) Characterization of O-methyltransferase activities associated with spinach chloroplast fractions. FEBS Lett.133, 55–58

    Google Scholar 

  • Cosio, E.G., McClure, J.W. (1984) Kaempferol glycosides and enzymes of flavonol biosynthesis in leaves of a soybean strain with low photosynthetic rates. Plant Physiol.74, 877–881

    Google Scholar 

  • Cosio, E.G., Weissenböck, G., McClure, J.W. (1985) Acifluorfen-induced isoflavonoids and enzymes of their biosynthesis in mature soybean leaves. Plant Physiol.78, 14–19

    Google Scholar 

  • Effertz, B., Weissenböck, G. (1980) Tissue specific variation of C-glycosylflavone patterns in oat leaves as influenced by the environment. Phytochemistry19, 1669–1672

    Google Scholar 

  • Frens, G. (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature (London) Phys. Sci.241, 20–22

    Google Scholar 

  • Fuisting, K., Weissenböck, G. (1980) “Flavanone synthase” in oat primary leaves. Time course and distribution at the tissue and subcellular level. Z. Naturforsch.35c, 973–977

    Google Scholar 

  • Hahlbrock, K. (1981) Flavonoids: In: The biochemistry of plants, vol. 7: Secondary plant products, pp. 425–456, Stumpf, P.K., Conn, E.E., eds. Academic Press New York London Toronto Sydney San Francisco

    Google Scholar 

  • Hopp, W., Hinderer, W., Petersen, M., Seitz, H.U. (1985) Anthocyanin-containing vacuoles isolated from protoplasts ofDaucus carota cell cultures. In: The physiological properties of plant protoplasts, pp. 122–132, Pilet, P.E., ed. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Hopp, W., Seitz, H.U. (1987) The uptake of acylated anthocyanin into isolated vacuoles from a cell suspension culture ofDaucus carota. Planta170, 74–85

    Google Scholar 

  • Hrazdina, G., Alscher-Herman, R., Kish, V.M. (1980) Subcellular localization of flavonoid synthesizing enzymes inPisum, Phaseolus, Brassica andSpinacia cultivars. Phytochemistry19, 1355–1359

    Google Scholar 

  • Hrazdina, G., Marx, G.A., Hoch, H.C. (1982) Distribution of secondary plant metabolites and their biosynthetic enzymes in pea (Pisum satuvum L.) leaves. Plant Physiol.70, 745–748

    Google Scholar 

  • Hrazdina, G., Wagner, G.J. (1985) Metabolic pathways as enzyme complexes: Evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch. Biochem. Biophys.237, 88–100

    Google Scholar 

  • Hrazdina, G., Wagner, G.J., Siegelmann, H.W. (1978) Subcellular localization of enzymes of anthocyanin biosynthesis in protoplasts. Phytochemistry17, 53–56

    Google Scholar 

  • Johnson, G.D., de Nogueira Araujo, G.M. (1981) A simple method of reducing the fading of immunofluorescence during microscopy. J. Immunol. Methods43, 349–350

    Google Scholar 

  • Kehrel, B., Wiermann, R. (1985) Immunochemical localization of phenylalanine ammonia-lyase and chalcone synthase in anthers. Planta163, 183–190

    Google Scholar 

  • Knogge, W., Weissenböck, G. (1986) Tissue-distribution of secondary phenolic biosynthesis in developing primary leaves ofAvena sativa L. Planta167, 196–205

    Google Scholar 

  • Matern, U., Reichenbach, C., Heller, W. (1986) Efficient uptake of flavonoids into parsley (Petroselinum hortense) vacuoles requires acylated glycosides. Planta167, 183–189

    Google Scholar 

  • McClure, J.W. (1979) The physiology of phenolic compounds in plants. In: Recent advances in phytochemistry, vol. 12: Biochemistry of plant phenolics, pp. 525–556, Swain, T., Harborne, J.B., Van Sumere, C.F., eds. Plenum Press, New York London

    Google Scholar 

  • McClure, J.W. (1986) Physiology of flavonoids in plants. In: Progress in clinical and biological research, vol. 213: Plant flavonoids in biology and medicine, pp. 77–85, Cody, V., Middleton, E., Jr., Harborne, J.B., eds. Alan R. Liss, New York

    Google Scholar 

  • Niemann, G., Koerselman-Kooy, J.W., Steijns, J.M. J.M., van Brederode, J. (1983) Flavone distribution in leaves of different genotypes ofSilene pratensis (Rafn) Godron and Gren. (Caryophyllaceae). Z. Pflanzenphysiol.109, 105–112

    Google Scholar 

  • Nozzolillo, C. (1972) The site and chemical nature of red pigmentation in seedlings. Can. J. Bot.50, 29–34

    Google Scholar 

  • Oettmeier, W., Heupel, A., (1972) Identification of flavonoids and cinnamic acid derivatives from spinach chloroplast preparations. Z. Naturforsch.27b, 177–183

    Google Scholar 

  • Ranjeva, R., Alibert, G., Boudet, A.M. (1977) Metabolisme des composes phenoliques chez lePetunia. VI. Intervention des chloroplasts dans la biosynthèse de la naringenine et de l'acide chlorogenique. Plant Sci. Lett.10, 235–242

    Google Scholar 

  • Roth, J., Bendayan, M., Orci, L. (1982) The protein A-gold (pAg) technique — a qualitative and quantitative approach for antigen localization on thin sections. In: Techniques in immunocytochemistry, pp. 107–133, Bullock, G.R., Petrisz, P., eds. Academic Press, New York London Toronto Sydney San Francisco

    Google Scholar 

  • Schächtele, C., Steup, M. (1986) α-1,4-Glucan phosphorylase forms from leaves of spinach (Spinacia oleracea L.). I. In situ localization by indirect immunofluorescence. Planta167, 444–451

    Google Scholar 

  • Steup, M., Schächtele, C. (1986) α-1,4-Glucan phosphorylases from spinach leaves. II. Peptide patterns and immunological properties. A comparison with other phosphorylase forms. Planta168, 222–231

    Google Scholar 

  • Strack, D., Meurer, B., Weissenböck, G. (1982) Tissue-specific kinetics of flavonoid accumulation in primary leaves of rye (Secale cereale L.). Z. Pflanzenphysiol.108, 131–141

    Google Scholar 

  • Sütfeld, R., Kehrel, B., Wiermann, R. (1978) Characterization, development and localization of “flavanone synthase” in tulip anthers. Z. Naturforsch.33c, 841–846

    Google Scholar 

  • Tissut, M. (1972) La synthèse flavonique dans les tuniques en survie de bulbe d'oignon. Physiol. Vég.10, 381–391

    Google Scholar 

  • Tissut, M., Ravanel, P. (1980) Repartition des flavonols dans l'epaisseur des feuilles de quelques vegetaux vasculaires. Phytochemistry19, 2077–2081

    Google Scholar 

  • Towbin, H., Staehelin, T., Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA76, 4350–4354

    Google Scholar 

  • Völker, W., Frick, B., Robenek, H. (1985) A simple device for low temperature polymerization of Lowicryl K4M. J. Microsc.138, 91–93

    Google Scholar 

  • Wagner, G.J., Hrazdina, G. (1984) Endoplasmic reticulum as a site of phenylpropanoid and flavonoid metabolism inHippeastrum. Plant Physiol.74, 901–906

    Google Scholar 

  • Weissenböck, G., Hedrich, R., Sachs, G. (1986) Secondary phenolic products in isolated guard cell, epidermal cell and mesophyll cell protoplasts from pea (Pisum sativum L.) leaves: Distribution and determination. Protoplasma134, 141–148

    Google Scholar 

  • Weissenböck, G., Schnabl, H., Sachs, G., Elbert, C., Heller, F.O. (1984) Flavonol content of guard cell and mesophyll cell protoplasts isolated fromVicia faba leaves. Physiol. Plant.62, 356–362

    Google Scholar 

  • Wellmann, E. (1974) Gewebespezifische Kontrolle von Enzymen des Flavonoidstoffwechsels durch Pytochrom in Kotyledonen des Senfkeimlings (Sinapis alba L.). Ber. Dtsch. Bot. Ges.87, 275–279

    Google Scholar 

  • Wiermann, R. (1981) Secondary plant products and cell and tissue differentiation. In: The biochemistry of plants, vol. 7: Secondary plant products, pp. 85–116, Stumpf, P.K., Conn, E.E., eds. Academic Press, New York London Toronto Sydney San Francisco

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beerhues, L., Robenek, H. & Wiermann, R. Chalcone synthases from spinach (Spinacia oleracea L.). Planta 173, 544–553 (1988). https://doi.org/10.1007/BF00958968

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00958968

Key words

Navigation