Skip to main content
Log in

Linearizing the expanding part of noninvertible mappings

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

The main result of this paper is on partial linearization by means of a topological transformation of a mapping which is not supposed to be invertible. Our approach also provides a new proof (based on elementary degree theory) of the Hartman-Grobman Lemma as well as sharp results on the smoothness of the pseudo-stable foliation. The results are valid in arbitrary Banach spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham, J. E. Marsden and T. Ratiu,Manifolds, Tensor Analysis and Applications, Springer-Verlag, Berlin 1988.

    Google Scholar 

  2. H. Amann,Gewöhnliche Differentialgleichungen, De Gruyter, Berlin 1983.

    Google Scholar 

  3. V. I. Arnold,Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, Berlin 1982.

    Google Scholar 

  4. B. Aulbach,Hierarchies of invariant manifolds, Preprint No. 185, University of Augsburg 1988.

  5. B. Aulbach and B. M. Garay,On partial linearization of noninvertible mappings, Preprint No. 226, University of Augsburg 1991.

  6. G. R. Belickii,Equivalence and normal forms of germs of smooth mappings, Russian Math. Surveys33, 107–177 (1978).

    Google Scholar 

  7. C. Bessaga and A. Pelczynski,Selected Topics in Infinite-dimensional Topology, PWN, Warsaw 1975.

    Google Scholar 

  8. S. N. Chow, X. B. Lin and K. Lu,Smooth foliations in infinite-dimensional spaces, J. Diff. Eqns.94, 266–291 (1991).

    Google Scholar 

  9. S. N. Chow and K. Lu,C k center unstable manifolds, Proc. Soc. Edinburgh Sect. A108, 303–320 (1988).

    Google Scholar 

  10. B. M. Garay,Cross-sections of solution funnels in Banach spaces, Studia Math.97, 13–26 (1990).

    Google Scholar 

  11. J. K. Hale,Asymptotic behaviour of dissipative systems, AMS, Providence R.I. 1988.

    Google Scholar 

  12. P. Hartman,On local homeomorphisms of Euclidean spaces, Bol. Soc. Math. Mexicana5, 220–241 (1960).

    Google Scholar 

  13. P. Hartman,A Lemma in the theory of structural stability of differential equations, Proc. Amer. Math. Soc.11, 610–622 (1960).

    Google Scholar 

  14. P. Hartman,On the local linearization of differential equations, Proc. Amer. Math. Soc.14, 568–573 (1963).

    Google Scholar 

  15. P. Hartman,Ordinary Differential Equations, Wiley, New York 1964.

    Google Scholar 

  16. D. Henry,Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag. Berlin 1981.

    Google Scholar 

  17. D. Henry,Invariant manifolds, Dep. de Math. Applicada, Univ. de Sao Paulo. Sao Paulo, Brazil (1983).

    Google Scholar 

  18. S. Hilger,Smoothness of invariant manifolds-a corollary from functional analysis, J. Funct. Anal.106, 95–129 (1992).

    Google Scholar 

  19. M. Hirsch, C. Pugh and M. Shub,Invariant Manifolds, Springer-Verlag, Berlin 1977.

    Google Scholar 

  20. M. C. Irwin,On the stable manifold theorem, Bull. London Math. Soc.2, 196–198 (1970).

    Google Scholar 

  21. M. C. Irwin,A new proof of the pseudo-stable manifold theorem, J. London Math. Soc.21, 557–566 (1980).

    Google Scholar 

  22. M. C. Irwin,Smooth Dynamical Systems, Academic Press, New York 1980.

    Google Scholar 

  23. A. Kelley,The stable, center-stable, center, center-unstable and unstable manifolds. Appendix C in R. Abraham and J. Robbin,Transversal Mappings and Flows, Benjamin, New York 1967.

    Google Scholar 

  24. U. Kirchgraber,Sur les propriétés géométriques au voisinage d'une variété invariante, C.R. Acad. Sci. Paris Ser. A288, 511 (1979).

    Google Scholar 

  25. U. Kirchgraber and K. Palmer,Geometry in the Neighborhood of Invariant Manifolds of Maps and Flows and Linearization, Pitman, London 1991.

    Google Scholar 

  26. U. Kirchgraber and E. Stiefel,Methoden der analytischen Störungsrechnung und ihre Anwendungen, Teubner, Stuttgart 1978.

    Google Scholar 

  27. H. W. Knobloch and F. Kappel,Gewöhnliche Differentialgleichungen, Teubner, Stuttgart 1974.

    Google Scholar 

  28. O. E. Lanford,Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Takens, in I. Stockgold, D. D. Joseph and D. H. Sattinger (ed.),Nonlinear Problems in the Physical Sciences and Biology, Springer-Verlag, Berlin 1973, pp. 159–192.

    Google Scholar 

  29. K. Lu,A Hartman-Grobman theorem for scalar reaction-diffusion equations, J. Diff. Equ.93, 364–394 (1991).

    Google Scholar 

  30. J. Marsden and J. Scheurle,The construction and smoothness of invariant manifolds by the deformation method, SIAM J. Math. Anal.18, 1261–1274 (1987).

    Google Scholar 

  31. X. Mora and J. Sola-Morales,Existence and nonexistence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equation, in S. N. Chow and J. K. Hale (ed.),Dynamics of Infinite-dimensional Systems, Springer-Verlag, Berlin 1987, pp. 187–210.

    Google Scholar 

  32. J. Palis and W. de Melo,Geometric Theory of Dynamical Systems, Springer-Verlag, Berlin 1982.

    Google Scholar 

  33. C. Pugh,On a theorem of P. Hartman, Amer. J. Math.91, 363–367 (1969).

    Google Scholar 

  34. J. Quandt,On the Hartman-Grobman theorem for maps, J. Diff. Equ.64, 159–164 (1986).

    Google Scholar 

  35. J. Quandt,On inverse limit stability for maps, J. Diff. Equ.79, 316–339 (1989).

    Google Scholar 

  36. G. R. Sell,Smooth linearization near a fixed point, J. Amer. J. Math.107, 1035–1091 (1985).

    Google Scholar 

  37. M. Shub,Global Stability of Dynamical Systems, Springer-Verlag, Berlin 1987.

    Google Scholar 

  38. J. Sijbrand,Properties of center manifolds, Trans. Amer. Math. Soc.289, 431–469 (1985).

    Google Scholar 

  39. S. Sternberg,Local contractions and a theorem of Poincaré, Amer. J. Math.79, 809–824 (1957).

    Google Scholar 

  40. S. Sternberg,On the structure of local homeomorphisms of Euclidean n-space II, Amer. J. Math.80, 623–631 (1958).

    Google Scholar 

  41. D. Stowe,Linearization in two dimensions, J. Diff. Equ.63, 183–226(1986).

    Google Scholar 

  42. S. J. van Strien,Center manifolds are not C , Math. Z.166, 143–145(1979).

    Google Scholar 

  43. A. Vanderbauwhede,Invariant manifolds in infinite dimensions, in S. N. Chow and J. K. Hale (ed.),Dynamics of Infinite-dimensional Systems, Springer-Verlag, Berlin 1987.

    Google Scholar 

  44. A. Vanderbauwhede,Centre manifolds, normal forms and elementary bifurcations, in U. Kirchgraber and H. O. Walther (ed.),Dynamics Reported Vol. II, Wiley, New York 1989, pp. 89–169.

    Google Scholar 

  45. A. Vanderbauwhede and S. A. van Gils,Center manifolds and contractions on a scale of Banach spaces, J. Funct. Anal.72, 209–224 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was written while the second author was an Alexander-von-Humboldt Research Fellow in the Mathematical Institute of the University of Augsburg, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aulbach, B., Garay, B.M. Linearizing the expanding part of noninvertible mappings. Z. angew. Math. Phys. 44, 469–494 (1993). https://doi.org/10.1007/BF00953663

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00953663

Keywords

Navigation