Skip to main content
Log in

Similarity solutions and model constitutive laws to viscoelasticity with application to nonlinear wave propagation

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

Nonlinear viscoelastic media are investigated within the framework of the group analysis. By requiring the governing system of equations to be invariant under the dilatation group, some classes of material response functions are characterized. Furthermore several sets of self-similar solutions to the model of interest are determined. Finally for the Maxwell media wave propagation into a non constant state described by a similarity solution is studied and the occurrence of a shock wave is considered.

Riassunto

Si considera un modello per i mezzi viscoelastici non lineari nell'ambito dell'analisi gruppale. Richiedendo che il sistema di equazioni di interesse sia invariante rispetto al gruppo di dilatazione, si caratterizzano delle classi di funzioni di risposta per il materiale. Inoltre si determinano diverse soluzioni di similarità. Successivamente nel caso dei mezzi di Maxwell si studia la propagazione di onde di discontinuità in uno stato non costante descritto da una soluzione di similarità. Infine si discutono le condizioni per l'esistenza di un tempo critico a cui un'onda d'urto può formarsi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lebon, C. Perez-Garcia and J. Casas-Vazquez,On a new thermodynamic description of viscoelastic materials, Physica137A, 531 (1986).

    Google Scholar 

  2. G. Lebon, C. Perez-Garcia and J. Casas-Vazquez,On the thermodynamic foundations of viscoelasticity, preprint.

  3. W. F. Ames,Nonlinear partial differential equations in engineering, Vol. II, Academic Press, New York 1972.

    Google Scholar 

  4. G. W. Bluman and J. D. Cole,Similarity methods for differential equations, Springer, Berlin 1974.

    Google Scholar 

  5. L. V. Osiannikov,Group analysis of differential equations, English ed., Academic Press, New York 1982.

    Google Scholar 

  6. D. Fusco,Group analysis and constitutive laws for fluid filled elastic tubes, Int. J. Non-linear Mech.19, 565–574 (1984).

    Google Scholar 

  7. C. Curró and D. Fusco,Invariant solutions and constitutive laws for a nonlinear elastic rod of variable cross-section, J. Appl. Math. Phys. (ZAMP)37, 244–255 (1987).

    Google Scholar 

  8. A. Donato and D. Fusco,Wave features and infinitesimal group analysis for a second order quasilinear equation in conservative form, Int. J. Nonlinear Mech.22, 37–46 (1987).

    Google Scholar 

  9. A. Donato,Similarity analysis and non-linear wave propagation, Int. J. Nonlinear Mech.22, 307–314 (1987).

    Google Scholar 

  10. W. F. Ames and A. Donato,On the evolution of weak discontinuities in a state characterized by similarity solutions, Int. J. Nonlinear Mech.23, 167–174 (1988).

    Google Scholar 

  11. A. Jeffrey,Quasilinear hyperbolic systems and waves, Pitman Publ., London 1976.

    Google Scholar 

  12. G. Boillat,La propagation des ondes, Gauthier-Villars, Paris 1965.

    Google Scholar 

  13. G. Boillat and T. Ruggeri,On the evolution law of weak discontinuities for hyperbolic quasi-linear systems, Wave Motion1, 149–152 (1979).

    Google Scholar 

  14. H. M. Cekirge and E. Varley,Large amplitude waves in bounded media: I. Reflection and transmission of large amplitude shockless pulses at an interface, Phil. Trans. R. Soc. London Ser. A,273, 261–313 (1973).

    Google Scholar 

  15. J. Y. Kazakia and E. Varley,Large amplitude waves in bounded media: II. The deformation of an impulsively loaded slab: the first reflection, Phil. Trans. R. Soc. London Ser. A,277, 191–237 (1974).

    Google Scholar 

  16. B. D. Coleman, M. E. Gurtin, R. I. Herrera and C. Truesdell,Wave propagation in dissipative materials. A reprint of five memoirs, Springer-Verlag Inc., New York 1965.

    Google Scholar 

  17. M. Renardy, Hrusa and Nohel,Mathematical problems in viscoelasticity, Longman, Harlow 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fusco, D., Palumbo, A. Similarity solutions and model constitutive laws to viscoelasticity with application to nonlinear wave propagation. Z. angew. Math. Phys. 40, 78–92 (1989). https://doi.org/10.1007/BF00945311

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00945311

Keywords

Navigation