Skip to main content
Log in

Trophic ecology of the stomiid (Pisces: Stomiidae) fish assemblage of the eastern Gulf of Mexico: Strategies, selectivity and impact of a top mesopelagic predator group

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The trophic ecology of the stomiid assemblage (Pisces, Stomiiformes, Stomiidae) in the eastern Gulf of Mexico, a region with physical and biological characteristics typical of oligotrophic low-latitude regimes, was investigated. Over 1400 specimens representing 69 species and 17 genera were examined. Four patterns of feeding were evident among the abundant stomiids: (1) myctophid predation; (2) zooplankton/small micronekton predation; (3) penaeidean shrimp predation; and (4) copepod/micronekton predation. One rare species preyed on cephalopods. Il was concluded that stomiids exhibited a high level of prey-selectivity, particularly considering the broad range of prey types available in the eastern Gulf of Mexico. The absence of numerically dominant potential prey (e.g.Cyclothone spp., sternoptychids) in the diets of piscivorous stomiids is possibly a function of feeding periodicity coupled with stomiid vertical migration. Stomiids may feed at night in the upper 200 m on vertically migrating myctophids while disregarding co-occurring nonmigrating prey during the daytime. Integration of stomiid abundance and diet data suggests that: (1) stomiids are the dominant upper trophic-level predators of the Gulf of Mexico mesopelagial, (2) stomiids inflict the highest predation impact on myctophids in low-latitude midwater ecosystems, and (3) the historic use of predation-avoidance arguments to explain certain mesopelagic phenomena (e.g. vertical migration, ventral photophores) appears to be substantiated by estimates of stomiid predation-impact. The stomiids may serve as key trophic mediators in the transfer of energy from the mesopelagial to the bathyand benthopelagial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson R (1967) Feeding chronology in two deep-sea fishes off California. MS thesis. University of Southern California, Los Angeles

    Google Scholar 

  • Angel MV (1986) Vertical distribution: study and implications. Tech Pap mar Sci (UNESCO) 49: 3–7

    Google Scholar 

  • Appelbaum S (1982) Studies on food organisms of pelagic fishes as revealed by the 1979 North Atlantic Eel Expedition. Helgöländer Meeresunters 35: 357–367

    Google Scholar 

  • Auster PJ, Griswold CA, Youngbluth MJ, Bailey TG (1992) Aggregations of myctophid fishes with other pelagic fauna. Envir Biol Fish 35: 133–139

    Google Scholar 

  • Badcock J, Merrett NR (1976) Midwater fishes in the eastern North Atlantic. I. Vertical distribution and associated biology in 30° N 23° W, with development notes on some myctophids. Prog Oceanogr 7: 3–58

    Google Scholar 

  • Bailey TG, Robison BH (1986) Food availability as a selective factor on the chemical compositions of midwater fishes in the eastern North Pacific. Mar Biol 91: 131–141

    Google Scholar 

  • Baird RC, Hopkins TL, Wilson DF (1975) Diet and feeding chronology ofDiaphus taaningi (Myctophidae) in the Cariaco Trench. Copeia 1975(2): 356–365

    Google Scholar 

  • Baldwin NS (1957) Food consumption and growth of brook trout at different temperatures. Trans Am Fish Soc 86: 323–328

    Google Scholar 

  • Barham EG (1970) Deep-sea fishes: lethargy and vertical orientation. In: Farquar GB, (ed) Proceedings of an International Symposium on Biological Sound Scattering in the Ocean. Maury Center for Ocean Science, Washington pp 101–119

    Google Scholar 

  • Beebe W, Crane J (1939) Deep-sea fishes of the Bermuda oceanographic expeditions. Family Melanostomiatidae. Zoologica, NY 24: 65–238

    Google Scholar 

  • Bertelsen E (1951) The ceratioid fishes. Ontogeny, taxonomy, distribution, and biology. Dana Rep 39: 1–261

    Google Scholar 

  • Blackburn M (1981) Low latitude gyral regions. In: Longhurst AR (ed) Analysis of marine ecosystems. Academic Press, New York, pp 3–29

    Google Scholar 

  • Bond GW (1974) Vertical distribution and life histories of the gonostomatid fishes (Pisces: Gonostomatidae) off Bermuda. Unpublished Ph.D dissertation. University of Rhode Island, Kingston

    Google Scholar 

  • Borodulina OD (1972) The feeding of mesopelagic predatory fish in the open ocean. J Ichthyol 12: 692–702

    Google Scholar 

  • Borodulina OD (1984) Identification of mesopelagic fish remains from predator stomachs. Communication II. Characteristics of the axial skeleton of fishes of the superfamily Stomiatoidea. J Ichthyol 24: 24–33

    Google Scholar 

  • Borodulina OD (1987) Identification of the remains of mesopelagic fishes. VI. Features of the axial skeleton of myctophoid fishes (Myctophoidea). J Ichthyol 27: 170–174

    Google Scholar 

  • Brauer A (1908) Die Tiefsee-Fische. II. Anatomischer Teil. Wiss Ergebn dt Tiefsee-Exped, Valdiviae, 15: 1–266

    Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27: 325–349

    Google Scholar 

  • Brett JR, Higgs DA (1970) Effect of temperature on the rate of gastric digestion in fingerling sockeye salmon,Oncorhynchus nerka. J Fish Res Bd Can 27: 1767–1779

    Google Scholar 

  • Brusca RC, Brusca GJ (1990) Invertebrates. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Cailliet GM, Ebeling AW (1990) The vertical distribution and feeding habits two common midwater fishes (Leuroglossus stilbius andStenobranchus leucopsaurus) off Santa Barbara. Calif coop ocean Fish Invest (CalCOFI) Rep 31: 106–123

    Google Scholar 

  • Campbell AK, Herring PJ (1987) A novel red fluorescent protein from the deep sea luminous fishMalacosteus niger. Comp Biochem Physiol 86B: 411–417

    Google Scholar 

  • Clark MR (1985) The food and feeding of seven fish species from the Campbell Plateau, New Zealand. NZ Jl mar Freshwat Res 19: 339–363

    Google Scholar 

  • Clarke GL, Backus RH (1964) Interrelations between the vertical migration of deep-Scattering layers, bioluminescence, and changes in daylight in the sea. Bull Inst océanogr Monaco 64: 1–36

    Google Scholar 

  • Clarke TA (1974) Some aspects of the ecology of stomiatoid fishes in the Pacifie Ocean near Hawaii. Fish Bull US 72: 337–351

    Google Scholar 

  • Clarke TA (1978) Diel feeding patterns of 16 species of mesopelagic fishes from Hawaiian waters. Fish Bull US 76: 485–513

    Google Scholar 

  • Clarke TA (1982) Feeding habits of stomiatoid fishes from Hawaiian waters. Fish Bull US 80: 287–304

    Google Scholar 

  • Clarke WD (1963) Function of bioluminescence in mesopelagic organisms. Nature, Lond 198: 1244–1246

    Google Scholar 

  • Collard SB (1970) Forage of some eastern Pacifie midwater fishes. Copeia 1970: 348–354

    Google Scholar 

  • Crescitelli F (1989) The visual pigments of a deep-water malacosteid fish. J mar biol Ass UK 69: 43–51

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB, Wright PG (1970) On the ‘filtern’ in the photophores of mesopelagic fish and on a fish emitting red light and especially sensitive to red light. J Physiol 208: 72–73

    Google Scholar 

  • Denton EJ, Warren FJ (1956) Visual pigments of deep-sea fish. Nature, Lond 178: 1059

    Google Scholar 

  • DeWitt FA Jr, Cailliet GM (1972) Feeding habits of two bristle-mouth fishes,Cyclothone acelinidens andC. signata (Gonostomatidae). Copeia 1972: 868–871

    Google Scholar 

  • Donaldson HA (1975) Vertical distribution and feeding of sergestid shrimps (Decapoda: Natantia) collected near Bermuda. Mar Biol 31: 37–50

    Google Scholar 

  • Douglas RH, Thorpe A (1992) Short-wave absorbing pigments in the ocular lenses of deep-sea teleosts. J mar biol Ass UK 72: 93–112

    Google Scholar 

  • Dudochkin AS (1988) The food of the grenadier,Macrourus holotrachys, in the southwestern Atlantic. J Ichthyol 28: 72–76

    Google Scholar 

  • Ebeling AW, Cailliet GM (1974) Mouth size and predator strategy of midwater fishes. Deep-Sea Res 21: 959–968

    Google Scholar 

  • Eggers DM (1977) Factors in interpreting data obtained by diel sampling of fish stomachs. J Fish Res Bd Can 34: 290–294

    Google Scholar 

  • Fink WL (1985) Phylogenetic relationships of the stomiid fishes (Teleostei: Stomiiformes). Misc Publs Mus Zool Univ Mich 171: 1–127

    Google Scholar 

  • Fink WL, Weitzman SH (1982) Relationships of stomiiform fishes (Teleostei), with a description ofDiplophos. Bull Mus comp Zool Harv 150: 31–93

    Google Scholar 

  • Flock ME, Hopkins TL (1992) Species composition, vertical distribution and food habits of the sergestid shrimp assemblage in the eastern Gulf of Mexico. J Crustacean Biol 12: 210–223

    Google Scholar 

  • Foxton P, Roe HSJ (1974) Observations on the nocturnal feeding of some mesopelagic decapod Crustacea. Mar Biol 28: 37–49

    Google Scholar 

  • Gartner JV Jr, Conley WJ, Hopkins TL (1988) Escapement of fishes from midwater trawls: a case study using lanternfishes (Pinces: Myctophidae). Fish Bull US 89: 213–222

    Google Scholar 

  • Gartner JV Jr, Hopkins TL, Baird RC, Milliken DM (1987) The lanternfishes (Pinces: Myctophidae) of the eastern Gulf of Mexico. Fish Bull US 85: 81–98

    Google Scholar 

  • Gibbs RH Jr (1964) Family Astronesthidae. Mem Sears Fdn mar Res 1: 311–350

    Google Scholar 

  • Gibbs RH Jr (1969) Taxonomy, sexual dimorphism, vertical distribution, and evolutionary zoogeography of the bathypelagic fish genusStomias (Stomiatidae). Smithson Contr Zool 31: 1–25

    Google Scholar 

  • Gorelova TA (1974) Zooplankton from the stomachs of juvenile lanternfish of the family Myctophidae. Okeanologia, Mosk 14: 575–580

    Google Scholar 

  • Gorelova TA (1980) Feeding of deep water fishes of genusCyclothone (Gonostomatidae, Pisces). Okeanologia, Mosk 20: 321–328

    Google Scholar 

  • Grove DJ, Goddard JS, Tan SP, Wirtz P (1976) Unpublished observations from M.Sc. and Ph.D. theses. University of Wales, Cardiff

  • Haedrich RL, Henderson NR (1974) Pelagic food ofCoryphaenoides armatus, a deep benthic rattail. Deep-Sea Res 21: 739–744

    Google Scholar 

  • Haffner RE (1952) Zoogeography of the bathypelagic fish,Chauliodus. Syst Zool 1: 112–133

    Google Scholar 

  • Hansen K, Herring PJ (1977) Dual bioluminescent systems in the anglerfish genusLinophryne (Pinces: Ceratioidea). J Zool, Lond 182: 103–124

    Google Scholar 

  • Heffernan JJ, Hopkins TL (1981) Vertical distribution and feeding of the shrimp generaGennadus andBenihogennema (Decapoda: Penaeidea) in the eastern Gulf of Mexico. J Crustacean Biol 1: 461–473

    Google Scholar 

  • Holton AA (1969) Feeding behavior of a vertically migrating lanternfish. Pacif Sci 23: 325–331

    Google Scholar 

  • Hopkins TL, Baird RC (1973) Diet of the hatchetfishSiernoptyx diaphana. Mar Biol 21: 34–46

    Google Scholar 

  • Hopkins TL, Baird RC (1975) Net feeding in mesopelagic fishes. Fish Bull US 73: 908–914

    Google Scholar 

  • Hopkins TL, Baird RC (1977) Aspects of the feeding ecology of oceanic midwater fishes. In: Andersen NR, Zahuranec BI (eds) Oceanic sound scattering prediction. Plenum Press, New York, pp 325–360

    Google Scholar 

  • Hopkins TL, Baird RC (1981) Trophodynamies of the fishValenciennellus tripunctulatus. I. Vertical distribution, diet and feeding chronology. Mar Ecol Prog Ser 5: 1–10

    Google Scholar 

  • Hopkins TL, Baird RC (1985a) Aspects of the trophic ecology of the mesopelagic fishLampanyctus alatus (family Myctophidae) in the eastern Gulf of Mexico. Biol Oceanogr 3: 285–313

    Google Scholar 

  • Hopkins TL, Baird RC (1985b) Feeding ecology of four hatchetfishes (Sternoptychidae) in the eastern Gulf of Mexico. Bull mar Sci 36: 260–277

    Google Scholar 

  • Hopkins TL, Flock ME, Gartner JV Jr, Torres JJ (1994) The structure and trophic ecology of a low latitude midwater decapod and mysid assemblage. Mar Ecol Prog Ser 109: 143–156

    Google Scholar 

  • Hopkins TL, Gartner JV Jr (1992) Resource-partitioning and predation impact of a low-latitude myctophid community. Mar Biol 114: 185–197

    Google Scholar 

  • Hopkins TL, Lancraft TM (1984) The composition and standing stock of mesopelagic micronekton at 27° N 86° W in the eastern Gulf of Mexico. Contr mar Sci Univ Tex 27: 143–158

    Google Scholar 

  • Hopkins TL, Sutton TT (1996) Midwater fishes and shrimps as competitors and resource partitioning in low latitude oligotrophic ecosystems. (in preparation)

  • Hopkins TL, Sutton TT, Lancraft TM (1996) The trophic structure and predation impact of a low latitude midwater fish community. Prog Oceanogr (in press)

  • Hurtubia J (1973) Trophic diversity measurement in sympatric predatory species. Ecology 54: 885–890

    Google Scholar 

  • Huichinson BP (1971) The effect of fish predation on the zooplankton of ten Adirondack lakes with particular reference to the alewife,Alosa pseudoharengus. Trans Am Fish Soc 100: 323–335

    Google Scholar 

  • Ivlev VS (1961) Experimental ecology of the feeding of fishes. Yale University Press, New Haven, Connecticut

    Google Scholar 

  • Jansenn J, Jones W, Slattery M (1993) Locomotion and feeding responses to mechanical stimuli inHistiodraco velifer (Artedidraconidae). Copeia 1993(3): 885–889

    Google Scholar 

  • Jones R (1974) The rate of elimination of food from the siomachs of haddock,Melanogrammus aeglefiraus, cod,Gadus morhua, and whiting,Merlangius merlangius. J Cons int Explor Mer 35: 225–242

    Google Scholar 

  • Kashkin NI, Parin NV (1983) Quantitative assessment of micronektonic fishes by nonclosing gear (a review). Biol Oceanogr 2: 263–287

    Google Scholar 

  • Kinzer J (1982) The food of four myctophid fish species off northwest Africa. Rapp P-v Réun Cons perm int Explor Mer 180: 385–390

    Google Scholar 

  • Kinzer J, Schulz K (1988) Vertical distribution and feeding patterns of midwater fish in the central equatorial Atlantic. II. Sternoptychidae. Mar Biol 99: 261–269

    Google Scholar 

  • Lancraft TM, Hopkins TL, Torres JJ (1988) Aspects of the ecology of the mesopelagic fishGonostoma elongatum (Gonostomatidae, Stomiiformes) in the eastern Gulf of Mexico. Mar Ecol Prog Ser 49: 27–40

    Google Scholar 

  • Lancraft TM, Robison BH (1980) Evidence of post-capture ingestion by midwater fishes in trawl nets. Fish Bull US 77: 713–715

    Google Scholar 

  • Legand M, Rivaton J (1969) Cycles biologiques des poissons mesopelagiques de l'est de l'océan Indien. Troisieme note: action predatrice des poissons micronectoniques. Cah ORSTOM Sér Océanogr 7: 29–45

    Google Scholar 

  • Lockett NA (1975) Some problems of deep-sea fish eyes. In: Ali MA (ed) Vision in fishes. Plenum Press, New York, pp 645–655

    Google Scholar 

  • Markus HC (1932) The extent to which temperature changes influence food conversion in largemouth bass, (Huro floridana). Trans Am Fish Soc 62: 202–210

    Google Scholar 

  • Marshall NB (1954) Aspects of deep-sea biology. Philosophical Library, Inc. New York

    Google Scholar 

  • Marshall NB (1979) Developments in deep-sea biology. Blandford, Dorset, England

    Google Scholar 

  • Mauchline J, Gordon JDM (1983) Diets of clupeoid, stomiatoid and salmonoid fish of the Rockall Trough, northeastern Atlantic Ocean. Mar Biol 77: 67–78

    Google Scholar 

  • Merrett NR, Roe HSJ (1974) Patterns and selectivity in the feeding of certain mesopelagic fishes. Mar Biol 28: 115–126

    Google Scholar 

  • Morrow JE, Gibbs RH (1964) Family Melanostomiatidae. Mem Sears Fdn mar Res 1: 351–511

    Google Scholar 

  • Nelson JS (1994) Fishes of the world. 3rd edn. John Wiley & Sons, Inc, New York

    Google Scholar 

  • Nolan RS, Rosenblatt RH (1975) A review of the deep-sea angler fish genusLasiognathus (Pistes: Thaumatichthyidae). Copeia 1975: 60–66

    Google Scholar 

  • O'Day WT, Fernandez HR (1974)Aristostomias scintillans (Malacosteidae): a deep-sea fish with visual pigments apparently adapted to its own bioluminescence. Vision Res 14: 545–550

    Google Scholar 

  • Ohman MD, Frost BW (1983) Reverse diel vertical migration: an escape from invertebrate predators. Science, NY 220: 1404–1407

    Google Scholar 

  • Omori M (1969) The biology of the sergestid shrimpSergestes lucens Hansen. Bull Ocean Res Inst Univ Tokyo 4: 1–83

    Google Scholar 

  • Pandian TJ (1967) Transformation of food in the fishMegalops cyprinoides. I. Influence of quality of food. Mar Biol 1: 60–64

    Google Scholar 

  • Partridge JC, Archer SN, Lythgoe JN (1988) Visual pigments in the individual rods of deep-sea fishes. J comp Physiol (Sect A) 162: 543–550

    Google Scholar 

  • Partridge JC, Shand J, Archer SN, Lythgoe JN, van Groningen-Luyben WAHN (1989) Interspecific variation in the visual pigments of deep-sea fishes. J comp Physiol (Sect A) 164: 513–529

    Google Scholar 

  • Pearcy WG, Ambler JW (1974) Food habits of deep-sea macrourid fishes off the Oregon Coast. Deep-Sea Res 21: 745–759

    Google Scholar 

  • Porter K (1979) Bioluminescence in marine plankton: a co-evolved antipredation system. Am Nat 114: 458–461

    Google Scholar 

  • Renfro WC, Pearcy WG (1966) Food and feeding habits of two pelagic shrimps. J Fish Res Bd Can 23: 1971–1975

    Google Scholar 

  • Repsys AJ, Applegate RL, Hales DC (1976) Food and selectivity of the black bullhead (Ictaluras melas) in Lake Poinsett, South Dakota. J Fish Res Bd Can 33: 768–775

    Google Scholar 

  • Robison BH, Craddock JE (1983) Mesopelagic fishes eaten by Fraser's dolphin,Lagenodelphis hosei. Fish Bull US 81: 283–289

    Google Scholar 

  • Roe HSJ, Badcock J (1984) The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 5. Vertical migrations and feeding of fish. Prog Oceanogr 13: 389–424

    Google Scholar 

  • Rosecchi E, Tracey DM, Webber WR (1988) Diet of orange roughy,Hoplostethus atlanticus (Pistes: Trachichthyidae) on the Challenger Plateau, New Zealand. Mar Biol 99: 293–306

    Google Scholar 

  • Scott WB, Tibbo SN (1968) Food and feeding habits of swordfish,Xiphias gladius, in the Western North Atlantic. J Fish Res Bd Can 25: 903–919

    Google Scholar 

  • Slobodkin LB (1968) How to be a predator. Am Zool 8: 43–51

    Google Scholar 

  • Somiya H (1982) “Yellow lens” eyes of a stomiatoid deep-sea fish,Malacosteus niger. Proc R Soc (Ser B) 215: 481–489

    Google Scholar 

  • Sutton TT, Hopkins TL (1996) The species composition, abundance, and vertical distribution of the stomiid (Pistes: Stomiiformes) fish assemblage of the Gulf of Mexico. Bull mar Sci 59: (in press)

  • Swenson WA, Smith LL (1973) Gastric digestion, food consumption, feeding periodicity and food conversion efficiency in walleye (Stizostedion vitreum vitreum). J Fish Res Bd Can 30: 1327–1336

    Google Scholar 

  • Tchernavin VV (1953) The feeding mechanism of a deep sea fishChauliodus sloani Schneider. British Museum (Natural History), London (Spec Publ)

  • Tyler AV (1970) Rates of gastric emptying in young cod. J Fish Res Bd Can 27: 1177–1189

    Google Scholar 

  • Tyler HR, Pearcy WG (1975) The feeding habits of three species of lanternfishes (family Myctophidae) off Oregon, USA. Mar Biol 32: 7–11

    Google Scholar 

  • Ware DM (1972) Predation by rainbow trout (Salmo gairdneri): the influence of hunger, prey density, and prey size. J Fish Res Bd Can 29: 1193–1201

    Google Scholar 

  • Weitzman SH (1967) The origin of the stomiatoid fishes with comments on the classification of salmoniform fishes. Copeia 1967(3): 507–540

    Google Scholar 

  • Weitzman SH (1974) Osteology and evolutionary relationships of the Sternoptychidae, wich a new classification of stomiatoid families. Bull Am Mus nat Hist 153: 331–476

    Google Scholar 

  • Werner EE, Hall DJ (1974) Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55: 1042–1052

    Google Scholar 

  • Widder EA, Latz MI, Herring PJ, Case JF (1984) Far red bioluminescence from two deep-sea fishes. Science, NY 225: 512–515

    Google Scholar 

  • Willis JM, Pearcy WG (1982) Vertical distribution and migration of fishes of the lower mesopelagic zone off Oregon. Mar Biol 70: 87–98

    Google Scholar 

  • Woodland J, Hastings JW (1971) Light to hide by: ventral luminescence te, camouflage the silhouette. Science, NY 173: 1016–1017

    Google Scholar 

  • Young RE (1983) Oceanic bioluminescence: an overview of general functions. Bull mar Sci 33: 829–845

    Google Scholar 

  • Young RE, Roper CFE (1977) Intensity regulation of bioluminescence during countershading in living midwater animals. Fish Bull US 75: 239–252

    Google Scholar 

  • Zaret TM, Suffern JS (1976) Vertical migration in zooplankton as a predator avoidance mechanism. Limnol Oceanogr 21: 804–813

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N.H. Marcus, Tallahassee

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutton, T.T., Hopkins, T.L. Trophic ecology of the stomiid (Pisces: Stomiidae) fish assemblage of the eastern Gulf of Mexico: Strategies, selectivity and impact of a top mesopelagic predator group. Mar. Biol. 127, 179–192 (1996). https://doi.org/10.1007/BF00942102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00942102

Keywords

Navigation