Skip to main content
Log in

Relationships between species ofLeymus, Psathyrostachys, andHordeum (Poaceae, Triticeae) inferred from Southern hybridization of genomic and cloned DNA probes

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

We have used total genomic DNA as a probe to size-fractionated restriction enzyme digests of genomic DNA from a range ofTriticeae species from the generaLeymus Hochst.,Psathyrostachys Nevski, andHordeum L., and hybrids betweenHordeum andLeymus to investigate their taxonomic relationships. Genomic Southern hybridization was found to be an effective and simple way to assess the distribution and diversity of essentially species-specific and common, repetitive DNA sequences, and is hence especially useful in evolutionary studies. The DNA sequences ofH. vulgare seem to diverge substantially from those ofH. brachyantherum, H. lechleri, H. procerum, andH. depressum. The genome ofThinopyron bessarabicum shows little homology to those of theLeymus species investigated, confirming thatT. bessarabicum is not an ancestral genome inLeymus. Although the genomes ofLeymus andPsathyrostachys share substantial proportions of DNA sequences, they include divergent repeated sequences as well. Hybridization with a ribosomal DNA probe (pTa 71) showed that the coding regions containing structural genes encoding the 18 S, 5.8 S, and 26 S ribosomal RNA were conserved among the species investigated, whereas the intergenic spacer region was more variable, presenting different sizes of restriction fragments and enabling a classification of the species. The rye heterochromatin probe pSc 119.2 hybridized to DNA fromH. lechleri andT. bessarabicum, but not to DNA from the other species investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anamthawat-Jonsson, K., Heslop-Harrison, J. S., 1992: Species-specific DNA sequences in theTriticeae. — Hereditas116: 49–54.

    Google Scholar 

  • , 1993: Isolation and characterization of genome-specific DNA sequences inTriticeae species. — Mol. Gen. Genet.40: 151–158.

    Google Scholar 

  • , 1990: Discrimination between closely relatedTriticeae species using genomic DNA as a probe. — Theor. Appl. Genet.79: 721–728.

    Google Scholar 

  • Bedbrook, J. R., Jones, J. D. G., O'Dell, M., Thompson, R. D., Flavell, R. B., 1980: A molecular description of telomeric heterochromatin inSecale species. — Cell19: 545–560.

    PubMed  Google Scholar 

  • von Bothmer, R., Jacobsen, N., Baden, C., Jorgensen, R. B., Linde-Laursen, I., 1991: An ecogeographical study of the genusHordeum. — Syst. Ecogeogr. Studies Crop Genepools 7. International Board for Plant Genetic Resources. — Rome: IBPGR.

    Google Scholar 

  • Chao, S., Sharp, P. J., Worland, A. J., Warham, E. J., Koebner, R. M. D., Gale, M. D., 1989: RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. — Theor. Appl. Genet.78: 495–504.

    Google Scholar 

  • Dewey, D. R., 1984: The genomic system of classification as a guide to intergeneric hybridization with the perennialTriticeae. — InGustafson, J. P., (Ed.): Gene manipulation in plant improvement, pp. 209–270. — New York: Plenum.

    Google Scholar 

  • Doebley, J., von Bothmer, R., Larson, S., 1992: Chloroplast DNA variation and the phylogeny ofHordeum (Poaceae). — Amer. J. Bot.79: 576–584.

    Google Scholar 

  • Dvorak, J., Zhang, H.-B., 1992: Application of molecular tools for study of phylogeny of diploid and polyploid taxa inTriticeae. — Hereditas116: 37–42.

    Google Scholar 

  • Flavell, R. B., Rimpau, J., Smith, D. B., 1977: Repeated sequence DNA relationships in four cereal genomes. — Chromosoma63: 205–222.

    Google Scholar 

  • Friebe, B., Mukai, Y., Gill, B. S., Cauderon, Y., 1992: C-banding and in situ hybridization analyses ofAgropyron intermedium, a partial wheat ×Ag. intermedium amphiploid, and six derived chromosome addition lines. — Theor. Appl. Genet.84: 899–905.

    Google Scholar 

  • Gerlach, W. L., Bedbrook, J. R., 1979: Cloning and characterization of ribosomal RNA genes from wheat and barley. — Nucl. Acids Res.7: 1869–1885.

    PubMed  Google Scholar 

  • Gupta, P. K., Fedak, G., Molnar, S. J., Wheatcroft, R., 1989: Distribution of aSecale cereale DNA repeat sequence among 25Hordeum species. — Genome32: 383–388.

    Google Scholar 

  • Heslop-Harrison, J. S., 1992: Molecular cytogenetics, cytology, and genomic comparisons in theTriticeae. — Hereditas116: 93–99.

    Google Scholar 

  • , 1990: Detection and characterization of 1 B/1 R translocations in hexaploid wheat. — Heredity65: 385–392.

    Google Scholar 

  • Jacobsen, N., von Bothmer, R., 1992: Supraspecific groups in the genusHordeum. — Hereditas116: 21–24.

    Google Scholar 

  • Jorgensen, R. B., 1986: Relationships in the barley genus (Hordeum): an electrophoretic examination of proteins. — Hereditas104: 273–291.

    Google Scholar 

  • Leitch, A. R., Schwarzacher, T., Wang, M. L., Leitch, I. J., Surlan-Momirovich, G., Moore, G., Heslop-Harrison, J. S., 1993: Molecular cytogenetic analysis of repeated sequences in a long-term wheat suspension culture. — Pl. Cell Tissue Organ Culture33: 287–296.

    Google Scholar 

  • Löve, A., 1984: Conspectus of theTriticeae. — Feddes Repert.95: 425–521.

    Google Scholar 

  • McIntyre, C. L., 1988: Variation in isozyme loci inTriticeae. — Pl. Syst. Evol.160: 123–142.

    Google Scholar 

  • , 1990: NewSecale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. — Genome33: 635–640.

    PubMed  Google Scholar 

  • Meinkoth, J., Wahl, G., 1984: Hybridization of nucleic acids immobilized on solid supports. — Anal. Biochem.138: 267–284.

    PubMed  Google Scholar 

  • Molnar, S. J., Gupta, P. K., Fedak, G., Wheatcroft, R., 1989: Ribosomal DNA repeat unit polymorphism in 25Hordeum species. — Theor. Appl. Genet.78: 387–392.

    Google Scholar 

  • , 1992: RFLP analysis ofHordeum species relationships. — Hereditas116: 87–91.

    Google Scholar 

  • Moore, G., Cheung, W., Schwarzacher, T., Flavell, R., 1991: BIS 1, a major component of the cereal genome and a tool for studying genomic organization. — Genomics10: 469–476.

    PubMed  Google Scholar 

  • Nagl, W., Knapp, B., Bill, O., 1991: The complex satellite DNA ofTropaeolum majus L.: Partial characterization of isolated and of cloned restriction fragments. — Ann. Bot.67: 347–355.

    Google Scholar 

  • Ørgaard, M., 1992:Leymus Hochst. (Poaceae, Triticeae). — Studies of Relationships. — PhD Thesis. Royal Veterinary and Agricultural University, Copenhagen.

    Google Scholar 

  • -Heslop-Harrison, J. S., 1993: Investigations of genome relationships inLeymus, Psathyrostachys, andHordeum inferred by genomic DNA: DNA in situ hybridization. — Ann. Bot. (in press).

  • Schwarzacher, T., Anamthawat-Jonsson, K., Harrison, G. E., Islam, A. K. M. R., Jia, J. Z., King, I. P., Leitch, A. R., Miller, T. E., Reader, S. M., Rogers, W. J., Shi, M., Heslop-Harrison, J. S., 1992: Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. — Theor. Appl. Genet.84: 778–783.

    Google Scholar 

  • , 1989: In situ localization of parental genomes in a wide hybrid. — Ann. Bot.64: 315–324.

    Google Scholar 

  • Swanson, C. P., Webster, P. L., (Eds) 1975: The cell. — New Jersey: Prentice Hall.

    Google Scholar 

  • Zhang, H.-B., Dvorak, J., 1991: The genome origin of tetraploid species ofLeymus (Poaceae: Triticeae) inferred from variation in repeated nucleotide sequences. — Amer. J. Bot.78: 871–884.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ørgaard, M., Heslop-Harrison, J.S. Relationships between species ofLeymus, Psathyrostachys, andHordeum (Poaceae, Triticeae) inferred from Southern hybridization of genomic and cloned DNA probes. Pl Syst Evol 189, 217–231 (1994). https://doi.org/10.1007/BF00939728

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00939728

Key words

Navigation