Skip to main content
Log in

Phytoliths as indicators of prehistoric maize (Zea mays subsp.mays, Poaceae) cultivation

  • Short communication
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Maize (Zea mays L. subsp.mays) has been identified in archaeological contexts by a high proportion of large cross-shaped phytoliths. Given the numerous races of maize, this study was undertaken to determine if differences below the species level could be noted. It was also designed to see if phytoliths differed in various plant parts at various stages of growth. Several races were grown under experimental conditions. No significant differences were found. Furthermore, few phytoliths alleged to be diagnostic of maize were discovered. Systemic studies of maize and analyses of prehistoric cultivation by means of phytoliths seem not to be as promising as some researchers have argued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bennett, D. M., Sangster, A. G., 1982: Electron-probe microanalysis of silicon in the adventitious roots and terminal internode of the culm ofZea mays. — Canad. J. Bot.60: 2024–2031.

    Google Scholar 

  • Blackman, E., 1968: The pattern and sequence of opaline silica deposition in rye (Secale cereale L.). — Ann. Bot.32: 207–218.

    Google Scholar 

  • , 1969: Observations on the development of silica cells of the leaf sheath of wheat (Triticum aestivum). — Canad. J. Bot.47: 827–838.

    Google Scholar 

  • Bozarth, S. R., 1986: Morphologically distinctivePhaseolus, Cucurbita, andHelianthus annus phytoliths. — InRovner, I., (Ed.): Plant opal phytolith and analysis in archaeology and paleoecology. Proceedings of the 1984 phytolith workshop, pp. 56–66. — North Carolina State University, Occasional papers no. 1 of the Phytolitharien.

  • , 1987: Diagnostic opal phytoliths from rinds of selectedCucurbita species. — Amer. Antiq.52: 607–615.

    Google Scholar 

  • Brown, D. A., 1984: Prospects and limits of a phytolith key for grasses in the central United States. — J. Archaeol. Sci.11: 345–368.

    Google Scholar 

  • Dunn, M. E., 1983: Phytolith analysis in archaeology. — Midcont. J. Archaeol.8: 287–297.

    Google Scholar 

  • Hill, W. W., 1938: The agricultural and hunting methods of Navajo Indians. — Yale Univ. Pub. in Anth.18.

  • Hudson, M. J., 1986: Silicon deposition in the roots, culm, and leaf ofPhalaris canariensis L. — Ann. Bot.58: 167–177.

    Google Scholar 

  • Jones, L. H. P., Handreck, K. A., 1967: Silica in soils, plants, and animals. — InNorman, A. G., (Ed.): Advances in agronomy19, pp. 107–147. — New York: Academic Press.

    Google Scholar 

  • Kurman, M. H., 1985: An opal phytolith and palynomorph study of extant and fossil soils in Kansas (U.S.A). — Paleogeogr. Paleoclimatol. Palaeoecol.49: 217–235.

    Google Scholar 

  • Lanning, F. C., Hopkins, T. L., Loera, J. C., 1980: Silica and ash content and depositional patterns of matureZea mays L. plants. — Ann. Bot.45: 549–554.

    Google Scholar 

  • Lewis, R. O., 1981: Use of opal phytoliths in paleoenvironmental reconstruction. — J. Ethnobiol.1: 175–181.

    Google Scholar 

  • Mangelsdorf, P. C., 1974: Corn: its origin, evolution, and improvement. — Cambridge: Harvard University Press.

    Google Scholar 

  • Metcalfe, C. R., 1960: Anatomy of monocotyledons: I.Graminae. — London: Oxford.

    Google Scholar 

  • , 1971: Anatomy of monocotyledons: V.Cyperaceae. — Oxford: Clarendon Press.

    Google Scholar 

  • Mulholland, S. C., 1986: Classification of grass silica phytoliths. — InRovner, I., (Eds.): Plant opal phytolith analysis in archaeology and paleoecology: Proceedings of the 1984 phytolith research workshop, pp. 41–52. — North Carolina State University, Occasional papers of the Phytolitharien. 1.

  • Pearsall, D. M., 1978: Phytolith analysis of archaeological soils: evidence for maize cultivation in formative Ecuador. — Sci.199: 177–178.

    Google Scholar 

  • , 1982: Phytolith analysis: applications of a new paleoethnobotanical technique in archaeology. — Amer. Anthr.8: 862–871.

    Google Scholar 

  • , 1990: Antiquity of maize cultivation in Ecuador: summary and reevaluation of the evidence. — Amer. Antiq.55: 324–337.

    Google Scholar 

  • Piperno, D. R., 1984: A comparison and differentiation of phytoliths from maize and wild grasses: use of a morphological criteria. — Amer. Antiq.49: 361–383.

    Google Scholar 

  • , 1985: Phytolith taphonomy and distributions in archaeological sediments from Panama. — J. Archaeol. Sci.12: 247–267.

    Google Scholar 

  • , 1988: Phytolith analysis: an archaeological and geological perspective. — San Diego: Academic Press.

    Google Scholar 

  • , 1985: Preceramic maize in central Panama: phytolith and pollen evidence. — Amer. Anthro.87: 871–878.

    Google Scholar 

  • Roosevelt, A., 1984: Problems interpreting the diffusion of cultivated plants. — InStone, D., (Ed.): Pre-Columbian plant migration, pp. 1–18. — Cambridge: Harvard University Press.

    Google Scholar 

  • Rovner, I., 1971: Potential of opal phytoliths for use in paleoecological reconstruction. — Quat. Res.1: 343–359.

    Google Scholar 

  • , 1983: Plant opal phytolith analysis: major advances in archaeobotanical research. — InSchiffer, M. B., (Ed.): Advances in archaeological method and theory,6, pp. 225–266. — New York: Academic Press.

    Google Scholar 

  • Russ, J. C., Rovner, I., 1989: Stereological identification of opal phytolith populations from wild and cultivatedZea. — Amer. Antiq.54: 784–792.

    Google Scholar 

  • Sangster, A. G., 1968: Studies of opaline silica deposits in the leaf ofSieglingia decumbens L. ‘Bernh.’ using the scanning electron microscope. — Ann. Bot.32: 237–240.

    Google Scholar 

  • , 1983: Anatomical features and silica depositional patterns in the rhizomes of the grassesSorghastrum nutans andPhragmites australis. — Canad. J. Bot.61: 752–761.

    Google Scholar 

  • , 1969: Some factors in relation to bulliform cell silification in the grass leaf. — Ann. Bot.33: 315–323.

    Google Scholar 

  • Starna, W. A., Kane, D. A., 1983: Phytoliths, archaeology, and caveats: a case study from New York state. — Man in the northeast26: 21–32.

    Google Scholar 

  • Twiss, P. C., Suess, E., Smith, R. M., 1969: Morphological classification of grass phytoliths. — Soil Sci. Soc. Amer. Proc.33: 109–115.

    Google Scholar 

  • Wellhausen, E. J., Roberts, L. M., Hernandez, X. E., 1951: Razas de maiz en Mexico. — Mexico: Secretaria de Agricultura y Ganaderia.

    Google Scholar 

  • Wills, W. H., 1988: Early prehistoric agriculture in the American Southwest. — Santa Fe: School of Amer. Res. Press.

    Google Scholar 

  • Yeck, R. D., Gray, F., 1972: Phytolith size characteristics between udolls and ustolls. — Soil Sci. Soc. Amer. Proc.36: 639–641.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doolittle, W.E., Frederick, C.D. Phytoliths as indicators of prehistoric maize (Zea mays subsp.mays, Poaceae) cultivation. Pl Syst Evol 177, 175–184 (1991). https://doi.org/10.1007/BF00937955

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00937955

Key words

Navigation