Skip to main content
Log in

Ribosomal DNA variation within and among individuals ofLisianthius (Gentianaceae) populations

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Restriction endonuclease fragment analysis of nuclear ribosomal DNA (rDNA) was completed on 25 individuals each from seven populations of theLisianthius skinneri (Gentianaceae) species complex in Panama. Seven restriction enzymes were used to determine the amount and type of rDNA variation within and among individuals of the populations. No restriction site variation was seen within populations or individuals although site differences were seen among populations. Spacer length variation within and among individuals of populations was mapped to the internal transcribed spacer (ITS) region between the 18S and 5.8S rRNA genes, a region inLisianthius rDNA that previously was shown to exhibit length differences among populations. This is the first reported case of such variation within and among individuals of populations for the ITS region. Presence or absence of ITS spacer length variation is not correlated with levels of isozymic heterozygosity within populations. No detectable length variation within individuals or populations was seen in the larger intergenic spacer (IGS). Although populations varied with respect to IGS length, all individuals of a given population had a single and equivalent IGS length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appels, R., Dvorak, J., 1982: The wheat ribosomal spacer region: its structure and variation in populations and among species. — Theor. Appl. Genet.63: 337–348.

    Google Scholar 

  • —,Honeycutt, R. L., 1986: rDNA: evolution over a billion years. — InDutta, S. K., (Ed.): DNA systematics 2: plants, pp. 81–135. — Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Arnheim, N., 1983: Concerted evolution of multigene families. — InNei, M., Koehn, R. K., (Eds.): Evolution of genes and proteins, pp. 38–61. — Sunderland, Mass.: Sinauer.

    Google Scholar 

  • Cluster, P. D., Jorgensen, R. A., Bernatsky, R., Hakim-Elahi, A., Allard, R. W., 1984: The genetics and geographical distribution of ribosomal DNA spacer-length variation in the wild oat,Avena barbata. — Genetics107: s21.

    Google Scholar 

  • Coen, E. S., Strachan, T., Dover, G., 1982a: The dynamics of concerted evolution in the ribosome and histone gene families in theDrosophila melanogaster species subgroup. — J. Mol. Biol.158: 17–25.

    PubMed  Google Scholar 

  • —,Thoday, E. S., Dover, G., 1982b: Rate of turnover of structural variants in rDNA gene family ofDrosophila melanogaster. — Nature295: 564–568.

    PubMed  Google Scholar 

  • Dover, G., 1982: Molecular drive: a cohesive mode of species evolution. — Nature299: 111–117.

    PubMed  Google Scholar 

  • —,Brown, S., Coen, E., Dallas, J., Strachan, T., Trick, M., 1982: The dynamics of genome evolution and species differentiation. — InDover, G. A., Flavell, R. B., (Eds.): Genome evolution, pp. 342–372. — New York: Academic Press.

    Google Scholar 

  • Doyle, J. J., Beachy, R. N., 1985: Ribosomal gene variation in soybean (Glycine) and its relatives. — Theor. Appl. Genet.70: 369–376.

    Google Scholar 

  • Erdmann, V. A., 1982: Collection of published 5S and 5.8S RNA sequences and their precursors. — Nucleic Acids Res.10: r93–r115.

    PubMed  Google Scholar 

  • Flavell, R. B., O'Dell, M., Sharp, P., Nevo, E., Beiles, A., 1986: Variation in the intergenic spacer of ribosomal DNA of wild wheat,Triticum dicoccoides, in Israel. — Mol. Biol. Evol.3: 547–558.

    Google Scholar 

  • Hamrick, J. L., Linhart, Y. B., Mitton, J. B., 1979: Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. — Ann. Rev. Ecol. Syst.10: 173–200.

    Google Scholar 

  • Lamppa, G. K., Honda, S., Bendich, A. J., 1984: The relationship between ribosomal repeat length and genome size inVicia. — Chromosoma89: 1–7.

    Google Scholar 

  • Learn, G. H., Schaal, B. A., 1987: Population subdivision for ribosomal DNA repeat variants inClematis fremontii. — Evolution41: 433–438.

    Google Scholar 

  • Loveless, M. D., Hamrick, J. L., 1984: Ecological determinants of genetic structure in plant populations. — Ann. Rev. Ecol. Syst.15: 65–95.

    Google Scholar 

  • Nevo, E., Beiles, A., 1988: Ribosomal DNA non-transcribed spacer polymorphism in subterranean mole rats: genetic differentiation, environmental correlates and phylogenetic relationships. — Evol. Ecol.2: 139–156.

    Google Scholar 

  • Rafalski, J. A., Wievíoroswki, M., Söll, D., 1983: Organization of ribosomal DNA in yellow lupine (Lupinus luteus) and sequence of the 5.8S RNA gene. — Fed. Eur. Biochem. Soc. Lett.152: 241–246.

    Google Scholar 

  • Rogers, S. O., Honda, S., Bendich., A. J., 1986: Variation in the ribosomal RNA genes among individuals ofVicia faba. — Pl. Mol. Biol.6: 339–345.

    Google Scholar 

  • Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., Allard, R. W., 1984: Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and — population dynamics. — Proc. Natl. Acad. Sci. USA81: 8014–8018.

    PubMed  Google Scholar 

  • Schaal, B. A., 1985: Genetic variation in plant populations: from demography to DNA. — InHaeck, J., Woldendorp, J., (Eds.): Structure and functioning of plant populations, pp. 321–324. — Amsterdam: North-Holland.

    Google Scholar 

  • —,Leverich, W. J., Nieto-Sotelo, J., 1987: Ribosomal DNA variation in the native plantPhlox divaricata. — Mol. Biol. Evol.4: 611–621.

    Google Scholar 

  • Smith, G. P., 1975: Evolution of repeated DNA sequences by unequal crossover. — Science191: 528–535.

    Google Scholar 

  • Sytsma, K. J., 1988: Taxonomic revision of the Central AmericanLisianthius skinneri species complex (Gentianaceae). — Ann. Missouri Bot. Gard.75: 1587–1602.

    Google Scholar 

  • —,Schaal, B. A., 1985a: Genetic variation, differentiation, and evolution in a species complex of tropical shrubs based on isozymic data. — Evolution39: 582–593.

    Google Scholar 

  • —, —, 1985b: Phylogenetics of theLisianthius skinneri (Gentianaceae) complex in Panama utilizing DNA restriction fragment analysis. — Evolution39: 594–608.

    Google Scholar 

  • Walbot, V., Cullis, C. A., 1985: Rapid genomic change in higher plants. — Ann. Rev. Pl. Physiol.36: 367–396.

    Google Scholar 

  • Weaver, R. E., Jr., 1972: A revision of the neotropical genusLisianthius (Gentianaceae). — J. Arnold Arbor.53: 76–100, 234–311.

    Google Scholar 

  • Williams, S. M., DeSalle, R., Strobeck, C., 1985: Homogenization of geographical variants at the nontranscribed spacer of rDNA inDrosophila mercatorum. — Mol. Biol. Evol.2: 338–347.

    PubMed  Google Scholar 

  • Yakura, K., Kato, A., Tanifuji, S., 1984: Length heterogeneity in the large spacer ofVicia faba rDNA is due to the differing number of a 325 bp repetitive sequence elements. — Molec. Gen. Genet.193: 400–405.

    Google Scholar 

  • Zimmer, E. A., Martin, S., Beverley, S., Kan, Y. W., Wilson, A. C., 1980: Rapid duplications and loss of the genes coding for the chains of hemoglobin. — Proc. Natl. Acad. Sci. USA77: 2158–2162.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sytsma, K.J., Schaal, B.A. Ribosomal DNA variation within and among individuals ofLisianthius (Gentianaceae) populations. Pl Syst Evol 170, 97–106 (1990). https://doi.org/10.1007/BF00937852

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00937852

Key words

Navigation