Skip to main content
Log in

Meiotic analyses ofCucumis hybrids and an evolutionary evaluation of the genusCucumis (Cucurbitaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Meiosis in seven interspecificCucumis hybrids has been analysed i.a. inC. metuliferus ×C. zeyheri, where the parents belong to different sections. In the triploid hybrids a remarkably high number of trivalents has been found. Additional data from literature on geographical distribution, cucurbitacins, flavonoid patterns, isozymes, C-banding, genome size, DNA amount and chloroplast DNA are used to discuss species relationships and evolution. The African cross-compatible group is divided into theMyriocarpus subgroup with the diploid speciesC. africanus, C. myriocarpus subsp.leptodermis and subsp.myriocarpus, and theAnguria subgroup withC. anguria, C. dipsaceus, C. ficifolius, C. prophetarum, C. zeyheri and all polyploids (exceptC. heptadactylus). It is argued that the Asian subg.Melo with x = 7 is derived from the African subg.Cucumis with x = 12; the latter contains all the polyploid species and has the most common basic chromosome number of theCucurbitaceae. This phylogenetic advance is interpreted with concepts of the quantum model of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayyanger, K. R., 1967: Taxonomy ofCucurbitaceae. — Bull. Nat. Inst. Sci. India34: 380–396.

    Google Scholar 

  • Batra, S., 1953: Interspecific hybridization in the genusCucumis. — Sci. Cult.18: 445–446.

    Google Scholar 

  • Berg, R. G. van den, 1985: Pollen morphology of the genusBegonia in Africa. — Diss. Agricultural Univ., Wageningen.

  • Bhaduri, P. N., Bose, P. C., 1948: Cytogenetic investigations in some Cucurbits with special reference to fragmentation of chromosomes as a physical basis of speciation. — J. Genet.48: 237–256.

    Google Scholar 

  • Brown, G. B., Deakin, J. R., Wood, M. B., 1969: Identification ofCucumis species by paper chromatography of flavonoids. — J. Amer. Soc. Hort. Sci.94: 231–234.

    Google Scholar 

  • Dane, F., 1976: Evolutionary studies in the genusCucumis. — Ph.D. Diss., C.S.U., Fort Collins, Colorado.

    Google Scholar 

  • —, 1983: Cucurbits. — InTanksley, S. D., Orton, T. J., (Eds.): Isozymes in plant genetics and breeding, pp. 369–390. — Amsterdam: Elsevier.

    Google Scholar 

  • —,Tsuchiya, T., 1979: Meiotic chromosome and pollen morphological studies of polyploidCucumis species. — Euphytica28: 563–567.

    Google Scholar 

  • —,Denna, D. W., Tsuchiya, T., 1980: Evolutionary studies of wild species in the genusCucumis. — Z. Pflanzenzüchtung.85: 89–109.

    Google Scholar 

  • Deakin, J. R., Bohn, G. W., Whitaker, T. W., 1971: Interspecific hybridization inCucumis. — Econ. Bot.25: 195–211.

    Google Scholar 

  • Ehrendorfer, F., Schweizer, D., Greger, H., Humphries, C., 1977: Chromosome banding and synthetic systematics inAnacyclus (Asteraceae-Anthemidae). — Taxon26: 387–394.

    Google Scholar 

  • Enslin, P. R., Rehm, S., 1958: The distribution and biogenesis of the cucurbitacins in relation to the taxonomy of theCucurbitaceae. — Proc. Linn. Soc. London169: 230–238.

    Google Scholar 

  • Esquinas-Alcazar, J. T., 1977: Alloenzyme variation and relationships in the genusCucumis. — Ph.D. Diss., University of California, Davis, California.

    Google Scholar 

  • Grant, V., 1980: Plant speciation, 2nd edn. — New York, London: Columbia Univ. Press.

    Google Scholar 

  • Greilhuber, J., Deumling, B., Speta, F., 1981: Evolutionary aspects of chromosome banding, heterochromatin, satellite DNA and genome size inScilla (Liliaceae). — Ber. Deutsch. Bot. Ges.94: 249–266.

    Google Scholar 

  • Hoen, P., 1985: Pollen morphology of the tribeDorsteniae (Moraceae), excluding the generaBrosimium, Helianthostylis andTrymathocoecus. — Stuifmail3: 5–7, Palaeobot. Palynol. Soc. Utrecht.

    Google Scholar 

  • Jeffrey, C., 1967: Flora of Tropical East Africa,Cucurbitaceae. — London: Crown agents for overseas governments and administrations.

    Google Scholar 

  • —, 1980: A review of theCucurbitaceae. — Bot. J. Linn. Soc.81: 233–247.

    Google Scholar 

  • Kho, Y. O., den Nijs, A. P. M., Franken, J., 1980: Interspecific hybridization inCucumis L. 2. The crossability of species, an investigation of in vivo pollen tube growth. — Euphytica29: 661–672.

    Google Scholar 

  • Kishi, Y., Fujishita, N., 1969: Studies on interspecific hybridization in the genusCucumis 1. Pollen germination and pollen tube growth in selfings and incompatible crossings. — J. Japan Soc. Hort. Sci.38: 329–334.

    Google Scholar 

  • —, —, 1970: Studies on the interspecific hybridization in the genusCucumis 2. Pollen tube growth, fertilization and embryogenesis of post-fertilization stage in incompatible crossings. — J. Japan Soc. Hort. Sci.39: 149–156.

    Google Scholar 

  • Ladizinsky, G., 1985: Founder effect in crop-plant evolution. — Econ. Bot.39: 191–199.

    Google Scholar 

  • Loidl, J., 1983: Some features of heterochromatin in wildAllium species. — Pl. Syst. Evol.143: 117–131.

    Google Scholar 

  • Mallick, M. F. R., Masui, M., 1986: Origin, distribution and taxonomy of melons. — Sci. Hort.28: 251–261.

    Google Scholar 

  • Meeuse, A. D. J., 1965: TheCucurbitaceae of Southern Africa. — Bothalia8: 59–82.

    Google Scholar 

  • —, 1985: The possible origin ofCucumis anguria L. — Blumea Suppl.4: 196–204.

    Google Scholar 

  • Naudin, C. V., 1859: Revue des Cucurbitacees. — Ann. Sci. Nat. Bot., Ser. 4,12: 79–128; 129–164.

    Google Scholar 

  • Nijs, A. P. M. den, Visser, D. L., 1985: Relationship between African species of the genusCucumis L. estimated by the production, vigour and fertility of F 1 hybrids. — Euphytica34: 279–290.

    Google Scholar 

  • Perl-Treves, R., Galun, E., 1985: TheCucumis plastome: physical map, intrageneric variation and phylogenetic relationships. — Theor. Appl. Gen.71: 417–429.

    Google Scholar 

  • —,Zamir, D., Navot, N., Galun, E., 1985: Phylogeny ofCucumis based on isozyme variability and its comparison with plastome phylogeny. — Theor. Appl. Gen.71: 430–436.

    Google Scholar 

  • Quiros, C. F., 1983: Alfalfa. — InTanksley, S. D., Orton, T. J., (Eds.): Isozymes in plant genetics and breeding, pp. 253–294. — Amsterdam: Elsevier.

    Google Scholar 

  • Raamsdonk, L. W. D. van, 1985a: Pollenfertility and seed formation in theOrnithogalum umbellatum/angustifolium complex (Liliaceae/Scilloideae). — Pl. Syst. Evol.149: 287–297.

    Google Scholar 

  • —, 1985b: Crossing and selfing experiments in theOrnithogalum umbellatum/angustifolium complex. — Pl. Syst. Evol150: 179–190.

    Google Scholar 

  • -Visser, D. L., 1989: Autotetraploidy inCucumis zeyheri and a related new speciesC. ×dinii derived from it. — Pl. Syst. Evol. (submitted).

  • Ramachandran, C., Narayan, R. K. J., 1985: Evolution of chromosomal DNA inCucumis. — Theor. Appl. Gen.69: 497–502.

    Google Scholar 

  • —,Seshadri, V. S., 1986: Cytological analysis of the genome of Cucumber (Cucumis sativis L.) and Muskmelon (Cucumis melo L.). — Z. Pflanzenzüchtung96: 25–38.

    Google Scholar 

  • —,Brandenburg, W. A., den Nijs, A. P. M., 1985: Infraspecific variation in C-banded karyotype and chiasma frequency inCucumis sativus (Cucurbitaceae). — Pl. Syst. Evol.151:31–41.

    Google Scholar 

  • Rick, C. M., 1983: Tomato. — InTanksley, S. D., Orton, T. J., (Eds.): Isozymes in plant genetics and breeding, pp. 147–166. — Amsterdam: Elsevier.

    Google Scholar 

  • Singh, A. K., Roy, R. P., 1974: Karyological studies inCucumis L. — Caryologia27: 153–160.

    Google Scholar 

  • —,Yadava, K. S., 1984: An analysis of interspecific hybrids and phylogenetic implications inCucumis (Cucurbitaceae). — Pl. Syst. Evol.147: 237–252.

    Google Scholar 

  • Smith, J. S. C., Goodman, M. M., Stuber, C., 1985: Relationship between Maize and Teosinthe of Mexico and Guatemala: numerical analysis of allozyme data. — Econ. Bot.39: 12–24.

    Google Scholar 

  • Staub, J. E., Fredrick, L., Marty, T., 1987: Electrophoretic variation in cross-compatible wild diploid species ofCucumis. — Canad. J. Bot.65: 792–798.

    Google Scholar 

  • Stebbins, G. L., 1950: Variation and evolution in plants. — New York, London: Columbia University Press.

    Google Scholar 

  • —, 1971: Chromosomal evolution in higher plants. — London: Edward Arnold Ltd.

    Google Scholar 

  • Trivedi, R. N., Roy, R. P., 1970: Cytological studies inCucumis andCitrullus. — Cytologia35: 561–569.

    Google Scholar 

  • Visser, D. L., den Nijs, A. P. M., 1984: Monogenic inheritance of andromonoecy in tetraploidCucumis fificolius A. Rich. — Cucurbit Genetics Cooperative Report7: 100–101.

    Google Scholar 

  • Whitaker, T. W., 1933: Cytological and phylogenetical studies in theCucurbitaceae. — Bot. Gaz.94: 780–790.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Raamsdonk, L.W.D., den Nijs, A.P.M. & Jongerius, M.C. Meiotic analyses ofCucumis hybrids and an evolutionary evaluation of the genusCucumis (Cucurbitaceae). Pl Syst Evol 163, 133–146 (1989). https://doi.org/10.1007/BF00936509

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00936509

Key words

Navigation