Skip to main content
Log in

Biochemical effects of luxabendazole onTrichinella spiralis

  • Original Investigations
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Biochemical changes produced by luxabendazole in muscle-stageTrichinella spiralis larvae consisted of a decrease in free glucose and glycogen levels (46.71% and 35.66%, respectively) after in vivo treatment, slight in vitro inhibition of fumarate reductase activity (24.15%) and, finally, inhibition of [3H]-colchicine-tubulin binding, which was found to be of a competitive nature, with an inhibition constant (Ki) of 0.9×10−7 M. In a parallel study, luxabendazole did not appear to be inhibitory to [3H]-colchicine binding to pig-brain tubulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett J (1978) Activation of succinate dehydrogenase from adultFasciola hepatica (Trematoda). Parasitology 76:269–275

    Google Scholar 

  • Borgers M, Nollin A de, Verheyen A, Brabander M de, Thienpont D (1975) Effects of new anthelmintics on the microtubular system of parasites. In: Microtubules and microtubule inhibitors. North Holland. Amsterdam, pp 497–508

    Google Scholar 

  • Bossche H van den (1972) Biochemical effects of the anthelmintic drug mebendazole. In: Bossche H van den (ed) Comparative Biochemistry of parasites. Academic Press, New York London, pp 139–158

    Google Scholar 

  • Bryant C, Bennet E (1983) Observations on the fumarate reductase system inHaemonchus contortus and their relevance to anthelmintic resistance and to strain variations of energy metabolism. Mol Biochem Parasitol 7:281–292

    Google Scholar 

  • Comley JCW, Wright DJW (1981) Succinate dehydrogenase and fumarate reductase activity inAspiculuris tetraptera andAscaris suum and the effects of the anthelmintics cambendazole, thiabendazole and levamisole. Int J Parasitol 11:79–84

    Google Scholar 

  • Corba J, Hovorka J, Spaldonova R, Stoffa P, Legeny J, Andrasko H (1987) Efficacy of luxabendazole (Hoe 216 V) susp. 5% in sheep naturally infected with the most important helminths. Helminthologia 24:227–235

    Google Scholar 

  • Criado A, Rodriguez E, Jimenez A (1987) The mode of action of some benzimidazole drugs onTrichinella spiralis. Parasitology 95:61–70

    Google Scholar 

  • Friedman PA, Platzer EG (1980) Interaction of anthelmintic benzimidazoles withAscaris suum embryonic tubulin. Biochim Biophys Acta 630:271–278

    Google Scholar 

  • Friedman PA, Platzer EC, Carrol EJ (1980) Tubulin characterization during embryogenesis ofAscaris suum. Biochem Pharmacol 28:2680–2682

    Google Scholar 

  • Grzywinski L, Karmanska K (1988) Efficacy of luxabendazole against different stages ofTrichinella spiralis. Proceedings of the 7th International Conference on Trichinellosis. Alicante, Spain, October 2–6, pp 144

  • Kassai T, Takats C, Fok E, Redl P (1988) Activity of luxabendazole against liver flukes, gastrointestinal roundworm and lungworms in naturally infected sheep. Parasitol Res 75:14–18

    Google Scholar 

  • Köhler P, Bachmann R (1978) The effects of antiparasitic drugs levamisole, thiabendazole, praziquantel and chloroquine on mitochondrial electron transport in muscle tissue fromAscaris suum. Mol Pharmacol 14:155–163

    Google Scholar 

  • Köhler P, Bachmann R (1984) Helminth tubulin and the action of benzimidazole carbamate drugs. Zentralbl Bakteriol Mikrobiol Hyg [A] 258:426–427

    Google Scholar 

  • Lacey E (1988) The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Int J Parasitol 18:885–936

    Google Scholar 

  • Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Nollin S de, Bossche H van den (1973) Biochemical effects of mebendazole onTrichinella spiralis larvae. J Parasitol 59:970–976

    Google Scholar 

  • Prichard RK (1973) The fumarate reductase reaction ofHacmonchus contortus and the mode of action of some anthelmintics. Int J Parasitol 3:409–417

    Google Scholar 

  • Rodriguez F, Criado A, Jimenez A (1985) A comparative study of the succinate dehydrogenase-fumarate reductase complex in the genusTrichinella. Parasitology 91:577–583

    Google Scholar 

  • Sangster NC, Prichard RK (1984) Uptake of thiabendazole and its effects on glucose uptake and carbohydrate levels in the thiabendazole-resistant and-susceptibleTrichostrongylus colubriformis. Int J Parasitol 14:121–126

    Google Scholar 

  • Shelanski ML, Gaskin F, Contor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA 70:765–768

    Google Scholar 

  • Sherline P, Bodwin C, Kipnis DM (1974) A new colchiome binding assay for tubulin. Anal Biochem 52:400–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Criado-Fornelio, A., de Armas-Serra, C., Jimenez-Gonzalez, A. et al. Biochemical effects of luxabendazole onTrichinella spiralis . Parasitol Res 76, 518–520 (1990). https://doi.org/10.1007/BF00931057

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00931057

Keywords

Navigation