Skip to main content
Log in

Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes

  • Part III Mono(ADP-ribosylation)
  • A. ADP-ribosylation Cycle
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Several cases of ADP-ribosylation of endogenous proteins in procaryotes have been discovered and investigated. The most thoroughly studied example is the reversible ADP-ribosylation of the dinitrogenase reductase from the photosynthetic bacteriumRhodospirillum rubrum and related bacteria. A dinitrogenase reductase ADP-ribosyltransferase (DRAT) and a dinitrogenase reductase ADP-ribose glycohydrolase (DRAG) fromR. rubrum have been isolated and characterized. The genes for these proteins have been isolated and sequences and show little similarity to the ADP-ribosylating toxins. Other targets for endogenous ADP-ribosylation by procaryotes include glutamine synthetase inR. rubrum andRhizobium meliloti and undefined proteins inStreptomyces griseus andPseudomonas maltophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Honjo T, Nishizuka Y, Hayaishi O, and Kato I: Diptheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem 243:3553–3555, 1968

    PubMed  Google Scholar 

  2. Gill DM, Pappenheimer AM, Brown R, and Kurnick JT: Studies on the mode of action of diptheria toxin. VII. Toxin-stimulated hydrolysis of nicotinamide adenine dinucleotide in mammalian cell extracts. J Exp Med 129: 1–21, 1969

    PubMed  Google Scholar 

  3. Moss J, and Vaughan M: Mechanism of action of choleragen—evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 252:2455–2457, 1977

    PubMed  Google Scholar 

  4. Goff CG: Chemical structure of a modification of the E. coli ribonucleic acid polymerase polypeptides induced by bacteriophage T4 infection. J Biol Chem 249:6181–6190, 1974

    PubMed  Google Scholar 

  5. Ludden PW, Roberts GP: Regulation of nitrogenase activity by reversible ADP-ribosylation. In B. Horecker, et al. (ed) Current Topics of Cellular Regulation, 989, Academic Press Inc.: Orlando, p. 23–55

  6. Pope MR, Murrell SA, Ludden PW: Covalent modification of the iron protein of nitrogenase fromRhodospirillum rubrum by adenosine diphosphoribosylation of a specific arginyl residue. Proc Natl Acad Sci USA 82: 3173–3177, 1985

    PubMed  Google Scholar 

  7. Woehle DL, Lueddecke BA, Ludden PW: ATP-dependent and NAD-dependent modification of glutamine synthetase fromRhodospirillum rubrum in vitro. J Biol Chem 265:13741–13749, 1990

    PubMed  Google Scholar 

  8. Shatters RG, Liu Y, Kahn ML: Isolation and characterization of a novel glutamine synthetase fromRhizobium meliloti. J Biol Chem 268:469–475, 1993

    PubMed  Google Scholar 

  9. Penyige A, Barabas G, Szabo I, Ensign JC: ADP-ribosylation of membrane proteins of Streptomyces griseus strain 52-I. FEMS Microbiol Lett 69: 293–298, 1990

    Google Scholar 

  10. Edmonds C, Griffin GE, Johnstone AP: Demonstration and partial characterization of ADP-ribosylation inPseudomonas maltophilia. Biochem J. 261:113–118, 1989

    PubMed  Google Scholar 

  11. Burris RH: Nitrogenases. J Biol Chem 266:9339–9342, 1991

    PubMed  Google Scholar 

  12. Hausinger RP, Howard J: Thiol reactivcity of the nitrogenase Fe-protein fromAzotobacter vinelandii. J Biol Chem 258:13486–13492, 1983

    PubMed  Google Scholar 

  13. Tso MYW, Burris RH: The binding of ATP and ADP by nitrogenased components fromClostridium pasteurianum. Biochim Biophys Acta 309: 263–70, 1973

    PubMed  Google Scholar 

  14. Ljones T, Burris RH: ATP hydrolysis and electron transfer in the nitrogenase reaction with different combinations of the iron protein and rhe molybdenum-iron protein. Biochim Biophys Acta 275:93–101, 1972

    PubMed  Google Scholar 

  15. Roberts GP, Brill WJ: Gene-product relationships of the nifregulon ofKlebsiella pneumoniae. J. Bact. 144:210–216, 1980

    PubMed  Google Scholar 

  16. Bolin JT, Ronco AE, Lorgan TV, Mortenson LE, Xuong N-H: The unusual metal clusters of nitrogenase: Structural features revealed by x-ray anomolous diffraction studies of the MoFe protein fromClostridium pasteurianum. Proc Natl Acad Sci USA 90:1078–1082, 1993

    PubMed  Google Scholar 

  17. Shah VK, Brill WJ: Isolation of an iron-molybdenum cofactor (FeMo-co) from nitrgenase. Proc Natl Acad Sci USA 74:3249–3253, 1977

    PubMed  Google Scholar 

  18. Stewart WPD, Fitzgerald GP, Burris RH:In situ studies on N2 fixation using the acetylene reduction technique. Proc Natl Acad Sci USA 58:2071–2078, 1967

    PubMed  Google Scholar 

  19. Simpson FB, Burris RH: A nitrogen pressue of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 224:1095–1097, 1984

    PubMed  Google Scholar 

  20. Dowling TE, Preston GG, Ludden PW: Heat activation of the Fe protein of nitrogenase fromRhodospirillum rubrum. J Biol Chem 257:13987–13992, 1982

    PubMed  Google Scholar 

  21. Pope MR, Murrell SA, Ludden PW: Purification and properties of the heat released nucleotide modifying group from the inactive Fe protein of nitrogenase fromRhodospirillum rubrum. Biochemistry 24:2374–2380, 1985

    PubMed  Google Scholar 

  22. Hausinger RP, Howard JB: The amino acid sequence of the nitrogenase iron protein fromAzotobacter vinelandii. J Biol Chem 257:2483–2490, 1982

    PubMed  Google Scholar 

  23. Pretorius I-M, Rawlins DE, O'Neill EG, Jones WA, Kirby R, Woods DR: Nucleotide sequence of the gene encoding the nitrogenase ion protein ofThiobacillus ferrooxidans. J Bacteriol, 169:367–270, 1987

    PubMed  Google Scholar 

  24. Lehman LJ, Fitzmaurice WP, Roberts GP: The cloning and functional characterization of thenifH gene ofRhodospirillum rubrum. Gene 95: 143–147, 1990

    PubMed  Google Scholar 

  25. Pope MR, Saari LL, Ludden PW: N-glycohydrolysis of adenosine diphosphoribosyl argine linkages by dinitrogenase reductase activating glycohydrolase (activating enzyme) fromRhodospirillum rubrum. J Biol Chem 261:10104–10111, 1986

    PubMed  Google Scholar 

  26. Ludden PW, Burris RH: Activating factor for the iron protein of nitrogenase fromRhodospirillum rubrum. Science 194:424–426, 1976

    PubMed  Google Scholar 

  27. Nordlund S, Eriksson U, Blatscheffsky H: Necessity of a membrane component for nitrogenase activity inRhodospirillum rubrum. Biochem Biophys Acta 462:187–195, 1977

    PubMed  Google Scholar 

  28. Ludden PW, Burris RH: Removal of an adenine-loke molecule during activation of dinitrogenase reductase fromRhodospirillum rubrum. Proc Natl Acad Sci USA 76:6201–6205, 1979

    PubMed  Google Scholar 

  29. Saari LL, Triplett EW, Ludden PW: Purification and properties of the activating enzyme for iron protein of nitrogenase from the photosynthetic bacteriumRhodospirillum rubrum. J Biol Chem 259:15502–15508, 1984

    PubMed  Google Scholar 

  30. Triplett EW, Wall JD, Ludden PW: Expression of the activating enzyme and Fe protein of nitrogenase fromRhodospirillum rubrum. J Bacteriol 152:786–791, 1982

    PubMed  Google Scholar 

  31. Pope MR, Saari LL, Ludden PW: Fluorometric assay for ADP-ribosylarginine cleavage enzymes. Anal Biochem 160:68–77, 1987

    PubMed  Google Scholar 

  32. Saari LL, Pope MR, Murrell SA, Ludden PW: Studies on the activating enzyme for iron protein of nitrogenase fromRhodospirillum rebrum. J Biol Chem 261:4973–4977, 1986

    PubMed  Google Scholar 

  33. Ludden PW: Borate inhibits activation of inactive dinitrogenase reductase fromRhodospirillum rubrum. Biochem J 197:503–505, 1981

    PubMed  Google Scholar 

  34. Nordlund S, Noren A: Dependence on divalent cations of the activation for inactive Fe protein of nitrogenase fromRhodospirillum rubrum. Biochem Biophys Acta 791:21–27, 1984

    Google Scholar 

  35. Lowery RG, Saari LL, Ludden PW: Reversible regulation of the iron protein of nitrogenase fromRhodospirillum rubrum by ADP-ribosylationin vitro. J Bacteriol 166:513–518, 1986

    PubMed  Google Scholar 

  36. Lowery RG, Ludden PW: Purification and properties of the dinitrogenase reductase inactivating ADP-ribosyltransferase fromRhodospirillum rubrum. J Biol Chem 263:16714–16719, 1988

    PubMed  Google Scholar 

  37. Pierrard J, Ludden PW, Roberts GP: Posttranslational regulation of nitrogenase inRhodobacter capsulatus: Existence of two independent regulatory effects of ammonium. J Bacteriol 175:1358–1366, 1993

    PubMed  Google Scholar 

  38. Lowery RG, Ludden PW: Effect of Nucleotides on the Activity of Dinitrogenase Reductase ADP-ribosyltransferase fromRhodospirillum rubrum. Biochemistry 28:4956–4961, 1989

    PubMed  Google Scholar 

  39. Georgiardis MM, Komiya P, Chakrabarti P, Woo D, Kornuc JJ, Rees DC: Crystallographic structure of the nitrogenase iron protein fromAzotobacter vinelandii. Science 257:1653–1659, 1992

    PubMed  Google Scholar 

  40. Murrell SA, Lowery RG, Ludden PW: ADP-ribosylation of dinitrogenase reductase fromClostridium pasteurianum prevents its inhibition of nitrogenase fromAzotobacter vinelandii. Biochem J 251:609–612, 1988

    PubMed  Google Scholar 

  41. Lowery RG, Chang CL, Davis LC, McKenna MC, Stephens PJ, Ludden PW: Substitution of Histidine for Arginine-101 of Dinitrogenase reductase Disrupts Electron Transfer to Dinitrogenase. Biochemistry 28: 1206–1212, 1989

    PubMed  Google Scholar 

  42. Fitzmaurice WP, Saari LL, Lowery RG, Ludden PW, Roberts GP: Genes coding for the reversible ADP-ribosylation system of dinitrogenase reductase fromRhodospirillum rubrum. Mol Gen Gene 218:340–347, 1989

    Google Scholar 

  43. Fu H-A, Fitzmaurice WP, Roberts GP, Burris RH: Cloning and expression ofdraTG genes fromAzospirillum lipoferum. Gene 86:95–98, 1990

    PubMed  Google Scholar 

  44. Zhang Y, Burris RH, Roberts GP: Cloning, sequencing, mutagenesis, and functional characterization ofdraT anddraG genes fromAzospirillum brasilense. J Bacteriol 174:3364–3369, 1992

    PubMed  Google Scholar 

  45. Masephol B, Krey R, Klipp W: ThedraTG region ofRhodobacter capsulatus is required for posttranslational regulation of both the molybdenum and the alternative nitrogenase. J Gen Microbiol 1993 (in press)

  46. Fu H, Burris RH, Roberts GP: Reversible ADP-ribosylation is demonstrated to be a regulatory mechanism in prokaryotes by heterologous expression. Proc Natl Acad Sci USA 87:1720–1724, 1990

    PubMed  Google Scholar 

  47. Liang J, Nielsen GM, Lies DP, Burris RH, Roberts GP, Ludden PW: Mutations in thedraT anddraG genes ofRhodospirillum rubrum result in loss of regulation of nitrogenase by reversible ADP-ribosylation. J Bacteriology 173:6903–6909, 1991

    Google Scholar 

  48. Kanemoto RH, Ludden PW: Effect of ammonia, darkness, and phenazine methosultate on whole-cell nitrogenase activity and Fe protein modification inRhodospirillum rubrum. J Bacteriol 158:713–720, 1984

    PubMed  Google Scholar 

  49. Paul TD, Ludden PW: Adenine nucleotide levels inRhodospirillum rubrum during switch-off of whole-cell nitrogenase activity. Biochem J 224: 961–969, 1984

    PubMed  Google Scholar 

  50. Li J, Hu C, Yoch DC: Changes in amino acid and nucleotide pools ofRhodospirillum rubrum during switch-off of nitrogenase activity initiated by NH4+ or darkness. J Bacteriol 169:231–237, 1987

    PubMed  Google Scholar 

  51. Nordlund S, Hogland L: Studies of the adenylate and pyridine nucleotide pools during nitrogenase ‘switch-off’ inRhodospirillum rubrum. Plant Soil 90:203–209, 1986

    Google Scholar 

  52. Kanemoto RH, Ludden PW: Amino acid concentrations inRhodospirillum rubrum during expression and switch-off of nitrogenase activity. J Bacteriol 169:3035–3043, 1987

    PubMed  Google Scholar 

  53. Shapiro BM, Stadtman ER: 5′-adenylyl-)-tyrosine. The novel phosphodiester residue of adenylylated glutamine synthetase fromEscherichia coli. J Biol Chem 243:3769–3771, 1968

    PubMed  Google Scholar 

  54. Rhee SG, Chock PB, Stadtman ER: Glutamine synthetase fromEscherichia coli. Methods Enzymol 113:213–241, 1985

    PubMed  Google Scholar 

  55. Cervantes-Laurean D, Minter DE, Jacobson EL, Jacobson MK: Protein glycation by ADP-ribose: Studies of model conjugates. Biochemistry 32: 1528–1534, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludden, P.W. Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes. Mol Cell Biochem 138, 123–129 (1994). https://doi.org/10.1007/BF00928453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00928453

Key words

Navigation