Skip to main content
Log in

Target protein for eucaryotic arginine-specific ADP-ribosyltransferase

  • Part III Mono(ADP-ribosylation)
  • A. ADP-ribosylation Cycle
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Among ADP-ribosyltransferases reported in eucaryotes, arginine-specific transferases from turkey erythrocytes, chicken heterophils and rabbit skeletal muscle have been purified and extensively studied. They were reported to modify a number of proteinsin vitro. ADP-ribosylation of Ha-ras-p21 and transducin by the turkey erythrocyte transferase inhibits their GTPase and GTP-binding activities. Chicken heterophil enzyme modifies several substrate proteins for protein kinases and decreases the phosphate-acceptor activity. Rabbit skeletal muscle Ca2+-ATPase is inhibited by ADP-ribosylation catalyzed by the muscle transferase. Three transferases all ADP-ribosylate small molecular weight guanidino compounds such as arginine, arginine methylester and agmatine and poly-L-arginine and nuclear histones. However, the observation that muscle transferase did not ADP-ribosylate casein or actin, both of which can be modified by the heterophil transferase under the same conditions indicates that substrate specificity of these two enzymes are different. Substrate-dependent effects were observed with polyions of nucleotides such that polyanions stimulate the ADP-ribosylation of possible target protein, p33 by chicken heterophil transferase but has no effect on the modification of casein by the same enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moss J, Manganiello VC, Vaughan M: Hydrolysis of nicotinamide adenine dinucleotide by choleragen and its A protomer: Possible role in the activation of adenylate cyclase. Proc Natl Acad Sci USA 73: 4424–4427, 1976

    PubMed  Google Scholar 

  2. Moss J, Vaughan M: Mechanism of action of choleragen: Evidence for ADP-ribosyltransferase acitivity with arginine as an acceptor. J Biol Chem 252: 2455–2457, 1977

    PubMed  Google Scholar 

  3. Cassel D, Pfeuffer T: Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75: 2669–2673, 1978

    PubMed  Google Scholar 

  4. Gill DM, Meren R: ADP-ribosylation of membrane proteins catalyzed by cholera toxin: Basis of the activation of adenylate cyclase. Proc Natl Acad Sci USA 75: 3050–3054, 1978

    PubMed  Google Scholar 

  5. Northup JK, Sternweis PC, Smigel MD, Schleifer LS, Ross EM, Gilman AG: Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci USA 77: 6516–6520, 1980

    PubMed  Google Scholar 

  6. Pope MR, Murrell SA, Ludden PW: Covalent modification of the iron protein of nitrogenase fromRhodospirillum rubrum by adenosine diphosphoribosylation of a specific arginine residue. Proc Natl Acad Sci USA 82: 3173–3177, 1985

    PubMed  Google Scholar 

  7. Lowery RG, Ludden PW: Purification and properties of dinitrogenase reductase ADP-ribosyltransferase from the photosynthetic bacteriumRhodospirillum rubrum. J Biol Chem 263: 16714–16719, 1988

    PubMed  Google Scholar 

  8. Saari LL, Pope MR, Murrell SA, Ludden PW: Studies on the activating enzyme for iron protein nitrogenase fromRhodospirillum rubrum. J Biol Chem 261: 4973–4977, 1986

    PubMed  Google Scholar 

  9. Pope MR, Saari LL, Ludden PW: N-Glycohydrolysis of adenosine diphosphoribosyl arginine linkages by dinitrogenase reductase activating glycohydrolase (activating enzyme) fromRhodospirillum rubrum. J Biol Chem 261: 10104–10111, 1986

    PubMed  Google Scholar 

  10. Moss J, Vaughan M: Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase. Proc Natl Acad Sci USA 75: 3621–3624, 1978

    PubMed  Google Scholar 

  11. Moss J, Stanley SJ: Histone-dependent and histone-independent forms of an ADP-ribosyltransferase from human and turkey erythrocytes. Proc Natl Acad Sci USA 78: 4809–4812, 1981

    PubMed  Google Scholar 

  12. Yost DA, Moss J: Amino acid-specfic ADP-ribosylation: Evidence for two distinct NAD:arginine ADP-ribosyltransferases in turkey erythrocytes. J Biol Chem 258: 4962–4929, 1983

    Google Scholar 

  13. West RE, Jr, Moss J: Amino acid specific ADP-ribosylation: Specific NAD:arginine mono-ADP-ribosyltransferases associated with turkey erythrocyte nuclei and plasma membranes. Biochemistry 25: 8057–8062, 1986

    PubMed  Google Scholar 

  14. Moss J, Stanley SJ: Amino acid-specific ADP-ribosylation: Identification of an arginine-dependent ADP-ribosyltransferase in rat liver. J Biol Chem 256: 7830–7833, 1981

    PubMed  Google Scholar 

  15. Godeau F, Belin D, Koide SS: Mono(adenosine diphosphate ribosyl) transferase inXenopus tissues. Direct demonstration by a zymographic localization in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 137: 287–296, 1984

    PubMed  Google Scholar 

  16. Soman G, Tomer KB, Graves DJ: Assay of mono ADP-ribosyltransferase activity by using guanylhydrazones. Anal Biochem 134: 101–110, 1983

    PubMed  Google Scholar 

  17. Soman G, Mickelson JR, Louis CF, Graves DJ: NAD: guanidino group specific mono ADP-ribosyltransferase activity in skeletal muscle. Biochem Biophys Res Commun 120: 973–980, 1984

    PubMed  Google Scholar 

  18. Mishima K, Terashima M, Obara S, Yamada K, Imai K, Shimoyama M: Arginine-specific ADP-ribosyltransferase and its acceptor protein p33 in chicken polymorphonuclear cells: Co-localization in the cell granules, partial characterization andin situ mono(ADP-ribosyl)ation. J Biochem 110: 388–394, 1991

    PubMed  Google Scholar 

  19. Obara S, Mishima K, Yamada K, Taniguchi M, Shimoyama, M: DNA-regulated arginine-specific mono(ADP-ribosyl)ation and de-ADP-ribosylation of endogenous acceptor proteins in human neutrophils. Biochem Biophys Res Commun 163: 452–457, 1989

    PubMed  Google Scholar 

  20. Soman G, Haregewoin A, Hom RC, Finberg RW: Guanidine group specific ADP-ribosyltransferase in murine cells. Biochem Biophys Res Commun 176: 301–308, 1991

    PubMed  Google Scholar 

  21. Moss J, Jacobson MK, Stanley SJ: Reversibility of arginine-specific mono(ADP-ribosyl)ation: Identification in erythrocytes of an ADP-ribose-L-arginine cleavage enzyme. Proc Natl Acad Sci USA 82: 5603–5607, 1985

    PubMed  Google Scholar 

  22. Smith KP, Benjamin RC, Moss J, Jacobson MK: Identification of enzymatic activities which process protein bound mono(ADP-ribose). Biochem Biophys Res Commun 126: 136–142, 1985

    PubMed  Google Scholar 

  23. Chang Y-C, Soman G, Graves DJ: Identification of an enzymatic activity that hydrolyzes protein-bound ADP-ribose in skeletal muscle. Biochem Biphys Res Commun 139: 932–939, 1986

    Google Scholar 

  24. Moss J, Oppenheimer NJ, West RE, Jr, Stanley SJ: Amino acid specific ADP-ribosylation: Substrate specificity of an ADP-ribosylarginine hydrolase from turkey erythrocytes. Biochemistry 25: 5408–5414, 1986

    PubMed  Google Scholar 

  25. Moss J, Tsai S-C, Adamik R, Chen H-C, Stanley SJ: Purification and characterization of ADP-ribosylarginine hydrolase from turkey erythrocytes. Biochemistry 27: 5819–5823, 1988

    PubMed  Google Scholar 

  26. Moss J, Stanley SJ, Nightingale MS, Murtagh JJ, Jr, Monaco L, Mishima K, Chen H-C, Williamson KC, Tsai S-C: Molecular and immunological characterization of ADP-ribosylargine hydrolases. J Biol Chem 267: 10481–10488, 1992

    PubMed  Google Scholar 

  27. Adamietz P, Wielckens K, Bredehorst R, Lengyel H, Hilz H: Subcellular distribution of mono(ADP-ribose) protein conjugates in rat liver. Biochem Biophys Res Commun 101: 96–103, 1981

    PubMed  Google Scholar 

  28. Moss J, Yost DA, Stanley SJ: Amino acid-specific ADP-ribosylation: Stability of the reaction products of an NAD:arginine ADP-ribosyltransferase to hydroxylamine and hydroxide. J Biol Chem 258: 6466–6470, 1983

    PubMed  Google Scholar 

  29. Hsia JA, Tsai S-C, Adamik R, Yost DA, Hewlett EL, Moss J: Amino acid-specific ADP-ribosylation: Sensitivity to hydroxylamine of [cysteine(ADP-ribose)] protein [arginine(ADP-ribose)] protein linkages. J Biol Chem 260: 16187–16191, 1985

    PubMed  Google Scholar 

  30. Payne DM, Jacobson EL, Moss J, Jacobson MK: Modification of proteins by mono(ADP-ribosylation)in vivo. Biochemistry 24: 7540–7549, 1985

    PubMed  Google Scholar 

  31. Williamson KC, Moss J: Mono-ADP-ribosyltransferase and ADP-ribosylarginine hydrolases: a mono-ADP-ribosylation cycle in animal cells. In: J. Moss and M. Vaughan (eds), ADP-ribosylating toxins and G proteins: Insights into signal transduction. American Society for Microbiology, Washington, DC, pp 493–510, 1990

    Google Scholar 

  32. Shimoyama M, Tsuchiya M, Mishima K:Endogenous arginine-specific ADP-ribosyltransferases and their target proteins. In: S. Tuboi, N. Taniguchi and N. Katunuma (eds). The post-translational modification of proteins: roles on molecular and cellular biology. Japan scientific societies press, Tokyo and CRC press, Beca Raton, pp 183–192, 1992

    Google Scholar 

  33. Moss J, Stanley SJ, Watkins PA: Isolation and properties of an NAD- and guanidine-dependent ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem 255: 5838–5840, 1980

    PubMed  Google Scholar 

  34. Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M: ADP-ribosyltransferase from hen liver nuclei. Purification and characterization. J Biol Chem 259: 2022–2029, 1984

    PubMed  Google Scholar 

  35. Osagao H, Mishima K, Tsuchiya M, Tanigawa Y, Umeno T, Shimoyama M: Localization of an endogenous ADP-ribose acceptor, p33, in polymorphonuclear cell granules in chicken liver interlobular connective tissue. Biochem Biophys Res Commun 180: 64–68, 1991

    PubMed  Google Scholar 

  36. Peterson JE, Larew JS-A, Graves DJ: Purification and partial characterization of arginine-specific ADP-ribosyltransferase from skeletal muscle microsomal membranes. J Biol Chem 265: 17062–17069, 1990

    PubMed  Google Scholar 

  37. Zolkiewska A, Nightingale MS, Moss J: Molecular characterization of NAD:arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc Natl Acad Sci USA 89: 11352–11356, 1992

    PubMed  Google Scholar 

  38. Moss J, Stanley SJ, Oppenheimer NJ: Substrate specificity and partial purification of a stereospecific NAD- and guanidine-dependent ADP-ribosyltransferase from avian erythrocytes. J Biol Chem 254: 8891–8894, 1979

    PubMed  Google Scholar 

  39. Tsuchiya M, Tanigawa Y, Mishima K, Shimoyama M: Determination of ADP-ribosyl arginine anomers by reverse-phase high-performance liquid chromatography. Anal Biochem 157: 381–384, 1986

    PubMed  Google Scholar 

  40. Hara N, Mishima K, Tsuchiya M, Tanigawa Y, Shimoyama M: Mono(ADP-ribosyl)ation of Ca2+-dependent ATPase in rabbit skeletal muscle sarcoplasmic reticulum and the effect of poly L-lysine. Biochem Biophys Res Commun 144: 856–862, 1987

    PubMed  Google Scholar 

  41. Hara N, Tsuchiya M, Mishima K, Tanigawa Y, Shimoyama M: ADP-ribosylation of Ca2+-dependent ATPasein vitro suppress the enzyme activity. Biochem Biophys Res Commun 148: 989–994, 1987

    PubMed  Google Scholar 

  42. Larew JS-A, Peterson JE, Graves DJ: Determination of the kinetic mechanism of arginine-specific ADP-ribosyltransferase using a high performance liquid chromatographic assay. J Biol Chem 266: 52–57, 1991

    PubMed  Google Scholar 

  43. Taniguchi M, Tanigawa Y, Tsuchiya M, Mishima K, Obara S, Yamada K, Shimoyama M: Arginine-specific ADP-ribosyltransferase from rabbit skeletal muscle sarcoplasmic reticulum is solubilized as the active form with trypin: Partial purification and characterization. Biochem Biophys Res Commun 164: 128–133, 1989

    PubMed  Google Scholar 

  44. Taniguchi M, Tsuchiya M, Shimoyama M: Comparison of acceptor protein specificities on the formation of ADP-ribose acceptor adducts by arginine-specific ADP-ribosyltransferase from rabbit skeletal muscle sarcoplasmic reticulum with those of the enzyme from chicken peripheral polymorphonuclear cells. Biochim Biophys Acta 1161: 265–271, 1993

    PubMed  Google Scholar 

  45. Moss J, Watkins PA, Stanley SJ, Purnell MR, and Kidwell WR: Inactivation of glutamine synthetase by an NAD:arginine ADP-ribosyltransferase. J Biol Chem 259: 5100–5104, 1984

    PubMed  Google Scholar 

  46. Tsai S-C, Adamic R, Moss J, Vaughan M, Manne V, Kung H-F: Effects of phospholipid and ADP-ribosylation of GTP hydrolysis byEscherichia coli-synthesized Ha-ras-encoded p21. Proc Natl Acad Sci USA 82: 8310–8314, 1985

    PubMed  Google Scholar 

  47. Watkins PA, Kanaho Y, Moss J: Inhibition of the GTPase activity of transducin by an NAD:arginine ADP-ribosyltransferase from turkey erythrocytes. Biochem J 248: 749–754, 1987

    PubMed  Google Scholar 

  48. Raffaeilli N, Scaife RM, Purich DL: ADP-ribosylation of chicken red cell tubulin and inhibition of microtubule self-assemblyin vitro by the NAD+-dependent avian ADP-ribosyl transferase. Biochem Biophys Res Commun 184: 414–418, 1992

    PubMed  Google Scholar 

  49. Scaife RM, Wilson L, Purich DL: Microtubule protein ADP-ribosylationin vitro leads to assembly inhibition and rapid depolymerization. Biochemistry 31: 310–316, 1992

    PubMed  Google Scholar 

  50. Martinez M, Price SR, Moss J, Alvarez-Gonzalez R: Mono(ADP-ribosyl)ation of poly(ADP-ribose)polymerase by cholera toxin. Biochem Biophys Res Commun 181: 1412–1418, 1991

    PubMed  Google Scholar 

  51. Watkins PA, Moss J: Effects of nucleotides on activity of a purified ADP-ribosyltransferase from turkey erythrocytes. Arch Biochem Biophys 216: 74–80, 1982

    PubMed  Google Scholar 

  52. Kawamitsu H, Miwa M, Tanigawa Y, Shimoyama M, Noguchi S, Nisimura S, Ohtsuka E, Sugimura t: A hen enzyme ADP-ribosylates normal human and mutated c-Ha-ras oncogene products synthesized inEscherichia coli. Proc Japan Acad 62 (B): 102–104, 1986

    Google Scholar 

  53. Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M: ADP-ribosylation regulates the phosphorylation of histones by the catalytic subunit of cyclic AMP-dependent protein kinase. FEBS Lett 160: 217–220, 1983

    PubMed  Google Scholar 

  54. Tsuchiya M, Tanigawa Y, Ushiroyama T, Matsuura R, Shimoyama M: ADP-ribosylation of phosphorylase kinase and block of phosphate incorporation into the enzyme. Eur J Biochem 147: 33–40, 1985

    PubMed  Google Scholar 

  55. Matsuura R, Tanigawa Y, Tsuchiya M, Mishima K, Yoshimura Y, Shimoyama M: ADP-ribosylation suppresses phosphorylation of the L-type pyruvate kinase. Biochim Biophys Acta 969: 57–65, 1988

    PubMed  Google Scholar 

  56. Ushiroyama T, Tanigawa Y, Tsuchiya M, Matsuura R, Ueki M, Sugimoto O, Shimoyama M: Amino acid sequence of histone H1 at the ADP-ribose-accepting site and ADP-ribose histone-H1 adduct as an inhibitor of cyclic-AMP-dependent phosphorylation. Eur J Biochem 151: 173–177, 1985

    PubMed  Google Scholar 

  57. Matsuura R, Tanigawa Y, Tsuchiya M, Mishima K, Yoshimura Y, Shimoyama M: Preferential ADP-ribosylation of arginine-3 in synthetic heptapeptide Leu-Arg-Arg-Ala-Ser-Leu-Gly. Biochem J 253: 923–926, 1988

    PubMed  Google Scholar 

  58. Mishima K, Tanigawa Y, Hara N, Tsuchiya M, Ushiroyama T, Yoshimura Y, Shimoyama M: ADP-ribosylation of bradykinin and effects on its biological activities. J Biochem 103: 342–347, 1988

    PubMed  Google Scholar 

  59. Mishima K, Tsuchiya M, Tanigawa Y, Yoshimura Y, Shimoyama M: DNA-dependent mono(ADP-ribosyl)ation of p33, an acceptor protein in hen liver nuclei. Eur J Biochem 179: 267–273, 1989

    PubMed  Google Scholar 

  60. Yamada K, Tsuchiya M, Mishima K, Shimoyama M: p33, an endogenous target protein for arginine-specific ADP-ribosyltransferase in chicken polymorphonuclear leukocytes, is highly homologous tomin-1 protein (myb-induced myeloid protein-1). FEBS Lett 311: 203–205, 1992

    PubMed  Google Scholar 

  61. Ness SA, Marknell A, Graf T: The v-myb oncogene product binds to and activates the promylocyte-specificmim-1 gene. Cell 59: 1115–1125, 1989

    PubMed  Google Scholar 

  62. Terashima M, Mishima K, Yamada K, Tsuchiya M, Wakutani T, Shimoyama M: ADP-ribosylation of actins by arginine-specific ADP-ribosyltransferase purified from chicken heterophils. Eur J Biochem 204: 305–311, 1992

    PubMed  Google Scholar 

  63. Soman G, Graves DJ: Endogenous ADP-ribosylation in skeletal muscle membranes. Arch Biochem Biophys 260: 56–66, 1988

    PubMed  Google Scholar 

  64. Yamada K, Tsuchiya M, Nishikori Y, Shimoyama M: Automodification of arginine-specific ADP-ribosytransferase purified from chicken peripheral heterophils and alteration of the transferase activity. Arch Biochem Biophys 308: 31–36, 1994

    PubMed  Google Scholar 

  65. De Wolf MJS, Vitti P, Ambesi-Impiombato FS, Kohn LD: Thyroid membrane ADP-ribosyltransferase activity. Stimulation by thyrotropin and activity in functioning and nonfunctioning rat thyroid cells in culture. J Biol Chem 256: 12287–12296, 1981

    PubMed  Google Scholar 

  66. Jacquemin C, Thibout H, Lamgert B, Correze C: Endogenous ADP-ribosylation of Gs subunit and autonomous regulation of adenylate cyclase. Nature 323: 182–184, 1986

    PubMed  Google Scholar 

  67. Feldman AM, Levine MA, Baughman KL, Van Dop C: NAD+-mediated stimulation of adenylate cyclase in cardiac membranes. Biochem Biophys Res Commun 142: 631–637, 1987

    PubMed  Google Scholar 

  68. Obara S, Yamada K, Yoshimura Y, Shimoyama M: Evidence for the endogenous GTP-dependent ADP-ribosylation of the α-subunit of the stimulatory guanyl-nucleotide-binding protein concomitant with an increase in basal adenylyll cyclase activity in chicken spleen cell membrane. Eur J Biochem 200: 75–80, 1991

    PubMed  Google Scholar 

  69. Inageda K, Nishina H, Tanuma S: Mono-ADP-ribosylation of Gs by an eukaryotic arginine-specific ADP-ribosyltransferase stimulates the adenylate cyclase system. Biochem Biophys Res Commun 176: 1014–1019, 1991

    PubMed  Google Scholar 

  70. Hubbard MJ, Cohen P: On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18: 172–177, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuchiya, M., Shimoyama, M. Target protein for eucaryotic arginine-specific ADP-ribosyltransferase. Mol Cell Biochem 138, 113–118 (1994). https://doi.org/10.1007/BF00928451

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00928451

Key words

Navigation