Skip to main content
Log in

Performance limits of acoustooptic light deflectors due to thermal effects

  • Contributed Papers
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

Transducer conversion losses as well as acoustic and optic attenuation in solidstate acoustooptic light deflectors are responsible for temperature and stress fields which lead to deformation, index fields and changes in acoustic wavelength. For users, these effects result in beam deflection, lensing, aberration and a deterioration in efficiency. The known Maréchal criterion and a new criterion noted by the author set a limit of about one quarter wavelength to optic and acoustic wave aberrations. Maximum deflection efficiencies and light powers are determined as functions of the geometry, thermal boundary conditions, material constants and operating modes. A new thermal figure of meritM th 1 equalizes the differences of the acoustooptic figures of meritM 2. To corroborate the theoretical results, performance limits for typical operating modes have been measured. Some new deflector designs are proposed and experimentally verified on the basis of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

θ:

deflection angle

λ:

light wavelength in matter

λ0 :

light wavelength in vacuum

ϑ:

ultrasound velocity

f, Δf :

acoustic frequency, bandwidth

αv :

temperature coefficient of acoustic velocity

b, s, d, L, H :

dimensions of acoustooptic deflector (Fig. 1b)

a :

light beam aperture

N :

resolution of deflector

~w :

optical wavefront distortion

Δw :

rms-value ofw

n, n i :

refractive index, principal refractive indices

u AI :

deformation of optical window

E :

elastic constant

σij :

stress tensor

αw, σij :

thermal expansion coefficient(s)

T :

temperature rise relative to ambient temperature

πij :

piezooptical coefficients

A, D :

thermal material constants defined by (8)

w * :

acoustic wavefront distortion

k ϑ :

thermal diffusitivity constant

K :

thermal conductivity

W :

heat power density generated within deflector

WW}:

time-averaged value ofW

r, r′ :

position vectors

G :

Green's function

δ:

delta function

τ:

volume

ν:

coordinate normal to surface

i, j, q :

integer indices

αD :

acoustic attenuation coefficient

P ac :

acoustic power

P 0 :

acoustic power radiated from transducer

P w :

power loss within deflector

φ:

Airy stress function

F :

area

T′,σ′ xx :

normalized values ofT andσ xx

M 2 :

acoustooptic figure of merit

M th 1,M th 2 :

thermal figures of merit

M tot :

total figure of merit:M tot=M 2·M th 1

ε:

percentage of dissipated acoustic power

ηB :

deflection efficiency (Bragg condition fulfilled)

K i :

principal thermal conductivities

ϱ,p ij :

photoclastic constant(s)

ϱ:

mass density

c δ :

specific heat

References

  1. H.Eschler:Die Begrenzung der Leistungsfähigkeit akustooptischer Lichtablenker durch thermische Effekte. Doctoral Thesis, Technische Universität München (July 1975)

  2. N.Uchida, N.Niizeki: Proc. IEEE61, 1073 (1973)

    Google Scholar 

  3. G.A.Coquin, D.A.Pinnow, A.W.Warner: J. Appl. Phys.42, 2162 (1971)

    Article  ADS  Google Scholar 

  4. M.Born, E.Wolf:Principles of Optics (Pergamon Press, New York 1965) p. 460

    Google Scholar 

  5. H.S.Carslaw, J.C.Jaeger:Conduction of Heat in Solids (Clarendon Press, Oxford 1967) p. 27

    Google Scholar 

  6. Ref. 5 p. 18

    Google Scholar 

  7. B.A.Boley, J.H.Weiner:Theory of Thermal Stresses (John Wiley & Sons, New York 1960) pp. 125–129

    MATH  Google Scholar 

  8. S.Timoshenko, J.N.Goodier,Theory of Elasticity (McGraw-Hill, New York 1951) p. 33

    MATH  Google Scholar 

  9. K.Klöppel, W.Steinbach: Stahlbau27, 122 (1958)

    Google Scholar 

  10. R.Zurmühl:Matrizen (Springer-Verlag, Berlin-Göttingen-Heidelberg 1961) p. 343

    MATH  Google Scholar 

  11. H.Eschler, G.Goldmann, P.Graf, U.v.Hundelshausen, M.Lang, A.Braidt, G.Eith: Optik37, 516 (1973)

    Google Scholar 

  12. F.G.Smith, J.H.Thomson:Optics (John Wiley & Sons, London 1971)

    Google Scholar 

  13. Ref. 4 p. 468

    Google Scholar 

  14. H.Eschler: Opt. Commun.6, 230 (1972)

    Article  ADS  Google Scholar 

  15. D.A.Pinnow, L.G.Van Uitert, A.W.Warner, W.A.Bonner: Appl. Phys. Lett.15, 83 (1969)

    Article  Google Scholar 

  16. E.I.Gordon: Appl. Opt.5, 1629 (1966)

    ADS  Google Scholar 

  17. H.Eschler, F.Weidinger: J. Appl. Phys.46, 65 (1975)

    Article  ADS  Google Scholar 

  18. Ref. 5 p. 92

    Google Scholar 

  19. H.Eschler, R.Oberbacher, F.Weidinger, K.-H.Zeitler: Siemens Forsch.- u. Entw. Ber.4, 174 (1975)

    Google Scholar 

  20. H.Eschler: Frequenz26, 124 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Extract from the doctoral thesis of the Dipl.-Ing. Hans Eschler entitled „Die Begrenzung der Leistungsfähigkeit akustooptischer Lichtablenker durch thermische Effekte” and approved by „Fachbereich Elektrotechnik der Technischen Universität München” in July 1975.

Presently with the Zentrallaboratorium für Nachrichtentechnik, Siemens AG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eschler, H. Performance limits of acoustooptic light deflectors due to thermal effects. Appl. Phys. 9, 289–306 (1976). https://doi.org/10.1007/BF00900455

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00900455

PACS Codes

Navigation