Skip to main content
Log in

Modal and vectorial analysis for determination of stress axes associated with fault slip data

  • Articles
  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

Based on Anderson's faulting theory, for a given set of fault slip data including the sense of slip on faults and fault planes, this paper provides two possible methods to reconstruct the principal stress axes using vectorial and modal analysis procedure. The vectorial analysis consists of computing eigenvectors of the orientation matrices defined by axes Pϑ, B, and Tϑ (Pϑ, B, and Tϑ being geometrical axes parallel to axes σ1, σ2, σ3 associated with a single striated fault) which are determined geometrically knowing the slip vector S, the normal to fault plane N, and the dihedral angle 2ϑ. A parameter R, related to the maximum eigenvalue of the orientation matrix and the size of data sample, is shown to be a good test value for the homogeneity of the data. A process of refinement of this parameter enables “bad” data (representing faults generated under different tectonic events) to be ignored in the final computation of the principal stress axes; results are thus significantly improved and the vectorial analysis procedure enables the orientation of stress to be numerically determined. On defining probability density regions around each Pϑ, B, and Tϑ axes that incorporate the variation of fault geometry, the modal analysis is carried out in two density functions established by a convolution process to locate modes which represent optimal locations of the principal stress axes in spherical space. Splitting of heterogeneous data samples into homogeneous subsets is achieved by a dynamical cluster procedure which enables the principal stress axes associated with each subset to be determined separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, E. M., 1942,The Dynamics of Faulting and Dyke Formation with Applications to Britain: Oliver & Boyd, Edinburgh, p. 206.

    Google Scholar 

  • Angelier, J., 1979, Determination of the Mean Principal Directions of Stresses for a Given Fault Population:Tectonophysics, v. 56, p. T17–26.

    Google Scholar 

  • Angelier, J., 1984, Tectonic Analysis of Fault Slip Data Sets:J. Geophys. Res., v. 89, p. 5835–5848.

    Google Scholar 

  • Angelier, J. and Manoussis, S., 1980, Classification Automatique et Distinction des Phases Superposées en Tectonique de Failles:C. R. Acad. Sci. Paris, II, v. 290, p. 651–654.

    Google Scholar 

  • Angelier, J., Tarantola, A., Valette, B., and Manoussis, S., 1982, Inversion of Field Data in Fault Tectonics to Obtain the Regional Stress, I, Single-Phase Fault Population: A New Method of Computing the Stress Tensor:Geophys. J. R. astron. Soc., v. 69, p. 607–621.

    Google Scholar 

  • Armijo, R. and Cisternas, A., 1978, Un Probleme Inverse en Microtectonique Cassante:C. R. Acad. Sci. Paris, II, v. 289, p. 595–598.

    Google Scholar 

  • Bergerat, F., 1987, Stress Fields in the European Platform at the Time of Africa-Eurasia Collision:Tectonic, v. 6, p. 99–132.

    Google Scholar 

  • Bott, L. H. P., 1959, The Mechanisms of Oblique Slip Faulting:Geol. Mag., v. 96, p. 109–117.

    Google Scholar 

  • Carey, E. and Brunier, B., 1974, Analyse Théorique et Numérique d'un Modèle Mécanique Élémentaire Appliqué à l'étude d'une Population de Failles:C. R. Acad. Sci. Paris, II, v. 290, p. 297–300.

    Google Scholar 

  • Diday, E., 1971, Une Nouvelle Méthode de Classification Automatique et Reconnaissance des Formes: La Méthode des Nuées Dynamiques:Rev. Stat. Appl., v. 19(2), p. 283–300.

    Google Scholar 

  • Etchecopar, A., Vasseur, G., and Daignières, L., 1982, An Inverse Problem in Microtectonics for the Determination of Stress Tensors from Fault Striation Analyses:J. Struct. Geol., v. 3, p. 51–65.

    Google Scholar 

  • Huang, Q., 1987, Analyse géométrique et Dynamique de la Fracturation: Application à la Région de Sisteron et au Golfe de Suez:Mém. Sci. de la Terre, Paris VI, 87(14), 270 p.

    Google Scholar 

  • Huang, Q., 1988, Computer-Based Method to Separate Heterogeneous Fault Slip Data Sets into Subsets:Struct. Geol. v. 10, p. 297–299.

    Google Scholar 

  • Huang, Q. and Angelier, J., 1987, Les Systems de Failles Conjuguées: Une Méthode d'Identification, de Séparation et de Calcul des Axes de Contrainte:C. R. Acad. Sci. Paris, II, v. 304, p. 465–468.

    Google Scholar 

  • Huang, Q., Angelier, J., and Mechler, P., 1987, Filtrage et Diagrammes d'Iso-densités: Un Apport à l'Analyse de Données Orientées:C. R. Acad. Sci. Paris, II, v. 304, p. 377–382.

    Google Scholar 

  • Letouzey, J., 1986, Cenozoic Paleo-stress Pattern in the Alpine Foreland and Structural Interpretation in Platform Basin:Tectonophysics, v. 132, p. 25–230.

    Google Scholar 

  • Mardia, K. V., 1972,Statistics of Directional Data Academic Press, London and New York, 338 p.

    Google Scholar 

  • McKenzie, D. and Jackson, J., 1983, The Relationship between Strain Rates, Crustal Thickening, Paleomagnetism, Finite Strain, and Fault Movements within a Deforming Zone:Earth Planet. Sci. Lett., v. 65, p. 182–202.

    Google Scholar 

  • Michael, A. J., 1984, Determination of Stress from Slip Data: Faults and Folds:J. Geophys. Res., v. 89, p. 11517–11526.

    Google Scholar 

  • Michael, A. J., 1987, Use of Focal Mechanisms to Determine Stress: A Control Study:J. Geophys. Res., v. 92, p. 357–368.

    Google Scholar 

  • Scheidegger, A. E., 1965, On the Statistics of the Orientation of Bedding Planes, Grain Axes, and Similar Sedimentological Data:U.S. Geol. Surv. Prof. Paper, 525(C), p. 164–167.

  • Watson, G. S., 1966, The Statistics of Orientation Data:J. Geol., v. 75, p. 786–797.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, H. Modal and vectorial analysis for determination of stress axes associated with fault slip data. Math Geol 21, 543–558 (1989). https://doi.org/10.1007/BF00894668

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00894668

Key words

Navigation