Skip to main content
Log in

Covariance function diagnostics for spatial linear models

  • Articles
  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

Case deletion diagnostics are developed for detecting observations that are influential in estimating the covariance function of a spatial random field. Diagnostics are developed within the context of universal kriging. Computational formulae are given that make the procedures feasible and the diagnostics are illustrated in an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckman, R. J., Nachtsheim, C. J., and Cook, R. D., 1987, Diagnostics for Mixed-Model Analysis of Variance: Technometrics, v. 29, p. 413–426.

    Google Scholar 

  • Belsley, D. A., Kuh, E., and Welsch, R. E., 1980, Regression Diagnostics: John Wiley and Sons, New York.

    Google Scholar 

  • Christensen, R., 1987, Plane Answers to Complex Questions: The Theory of Linear Models: Springer-Verlag, New York.

    Google Scholar 

  • Christensen, R. 1990a, The Equivalence of Predictions from Universal Kriging and Intrinsic Random Function Kriging: Math. Geo., v. 22, p. 655–664.

    Google Scholar 

  • Christense, R., 1990b, Linear Models for Multivariate, Time Series, and Spatial Data: Springer-Verlag, New York.

    Google Scholar 

  • Christensen, R. Pearson, L. M., and Johnson, W., 1992, Case Deletion Diagnostics for Mixed-Models: Technometrics, v. 34, p. 38–45.

    Google Scholar 

  • Christensen, R., Johnson, W., and Pearson, L. M., 1992, Prediction Diagnostics for Spatial Linear Models: Biometrika, v. 79, p. 583–591.

    Google Scholar 

  • Cook, R. D., 1977, Detection of Influential Observations in Linear Regression: Technometrics, v. 19, p. 15–18.

    Google Scholar 

  • Cook, R. D., 1979, Influential Observations in Linear Regression: J. Am. Stat. Assoc., v. 74, p. 169–174.

    Google Scholar 

  • Cook, R. D., and Weisberg, S., 1980, Characterizations of an Empirical Influence Function for Detecting Influential Cases in Regression: Technometrics, v. 22, p. 495–508.

    Google Scholar 

  • Cook, R. D., and Weisberg, S., 1982, Residuals and Influence in Regression: Chapman and Hall, New York.

    Google Scholar 

  • Cressie, N., 1989, Geostatistics: Am. Stat., v. 43, p. 197–202.

    Google Scholar 

  • Davis, B. M., 1987, Uses and Abuses of Cross-Validation in Geostatistics: Math. Geo., v. 19, p. 241–248.

    Google Scholar 

  • Delfiner, P., 1976, Linear Estimation of Nonstationary Spatial Phenomena,in M. Guarascia, M. David, and C. Hüijbregts (Eds.), Advanced Geostatistics in the Mining Industry: Reidel, Dordrecht.

    Google Scholar 

  • Diamond, P., and Armstrong, M., 1984, Robustness of Variograms and Conditioning of Kriging Matrices: J. Int. Assoc. Math. Geo., v. 16, p. 809–822.

    Google Scholar 

  • Goldberger, A. S., 1962, Best Linear Unbiased Prediction in the Generalized Linear Regression Model: J. Am. Stat. Assoc., v. 57, p. 369–375.

    Google Scholar 

  • Golub, G. H., and Van Loan, C. F., 1989, Matrix Computations, 2nd ed.: The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Harper, W. V., and Furr, J. M., 1986, Geostatistical Analysis of Potentiometric Data in the Wolfcamp Aquifer of the Palo Duro Basin: Technical Report ONWI-587, Battelle Memorial Institute, Columbus, OH.

    Google Scholar 

  • Harville, D. A., 1977, Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems: J. Am. Stat. Assoc., v. 72, p. 320–338.

    Google Scholar 

  • Johnson, W., 1985, Influence Measures for Logistic Regression: Another Point of View: Biometrika, v. 72, p. 59–65.

    Google Scholar 

  • Johnson, W., and Geisser, S., 1983, A Predictive View of the Detection and Characterization of Influential Observations in Regression Analysis: J. Am. Stat. Assoc., v. 78, p. 137–144.

    Google Scholar 

  • Journel, A. G., and Hüijbregts, Ch. J., 1978, Mining Geostatistics: Academic Press, New York.

    Google Scholar 

  • Kitanidis, P. K., 1983, Statistical Estimation of Polynomial Generalized Covariance Functions and Hydrologic Applications: Water Res. Res., v. 19, p. 909–921.

    Google Scholar 

  • Kitanidis, P. K., 1985, Minimum-Variance Unbiased Quadratic Estimation of Covariances of Regionalized Variables: J. Int. Assoc. Math. Geo., v. 17, p. 195–208.

    Google Scholar 

  • Kitanidis, P. K., and Lane, R. W., 1985, Maximum Likelihood Parameter Estimation of Hydrologic Spatial Processes by the Gauss-Newton Method: J. Hydrol., v. 79, p. 53–71.

    Google Scholar 

  • Mardia, K. V., and Marshall, R. J., 1984, Maximum Likelihood Estimation of Models for Residual Covariance in Spatial Regression: Biometrika, v. 71, p. 135–146.

    Google Scholar 

  • Marshall, R. J., and Mardia, K. V., 1985, Minimum Norm Quadratic Estimation of Components of Spatial Covariance: J. Int. Assoc. Math. Geo., v. 17, p. 517–525.

    Google Scholar 

  • Matheron, G., 1969, Le Krigeage Universal: Fascicule 1, Cahiers du CMMM., 82 p.

  • Matheron, G., 1973, Intrinsic Random Functions and Their Applications: Adv. App. Prob., v. 5, p. 439–468.

    Google Scholar 

  • Patterson, H. D., and Thompson, R., 1974, Maximum Likelihood Estimation of Variance Components: Proc. of the 8th Int. Biomet. Conf., p. 197–207.

  • Pregibon, D., 1981, Logistic Regression Diagnostics: Ann. Stat., v. 9, p. 705–724.

    Google Scholar 

  • Seber, G. A. F., and Wild, C. J., 1989, Nonlinear Regression: John Wiley and Sons, New York.

    Google Scholar 

  • Warnes, J. J., 1986, A Sensitivity Analysis for Universal Kriging: J. Int. Assoc. Math. Geo., v. 18, p. 653–676.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, R., Johnson, W. & Pearson, L.M. Covariance function diagnostics for spatial linear models. Math Geol 25, 145–160 (1993). https://doi.org/10.1007/BF00893270

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00893270

Key words

Navigation