Skip to main content
Log in

Statistical properties of sediment bed profiles in alluvial channels

  • Articles
  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate in detail the statistical properties of series of bed elevations measured on gravel-bed and sand-bed alluvial channels, in order to identify means of quantifying bed roughness effects on streamflow. The semivariogram is used as the basic statistical method for investigating roughness properties of bed profiles obtained from field work and laboratory experiments. For sand bedforms, the semivariograms include exponential and periodic components from which can be obtained reliable measures of bedform spacing and height, as well as information on the degree of regularity of bedform arrangement. Because of the irregular nature of gravel-bed profiles, the approach in this case uses the semivariogram to investigate fractal properties of series of bed elevations to determine scales of bed roughness associated with grain sizes and small-scale bedforms and to estimate the Hausdorff dimension corresponding to each scale. These superimposed scales of roughness may be responsible for the greater flow resistance generally observed in gravel-bed rivers rather than predicted from the theoretical friction equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. R. L., 1983, River Bedforms: Progress and Problems:in Collinson, J. D. and Lewin, J. (Eds.), Modern and Ancient Fluvial Systems, Special Publication 6 of the International Association of Sedimentologists: Blackwell Scientific Publications, Oxford, p. 19–33.

    Google Scholar 

  • ASCE, 1963, Friction Factors in Open Channels: Jour. Hydraul. Div. Amer. Soc. Civil Eng., v. 89, p. 97–143.

    Google Scholar 

  • Bathurst, J. C., 1982, Theoretical Aspects of Flow Resistance:in Hey, R. D.; Bathurst, J. C.; and Thorne, C. R. (Eds.), Gravel-Bed Rivers: John Wiley & Sons, Chichester, p. 83–105.

    Google Scholar 

  • Bluck, B. J., 1987, Bed Forms and Clast Size Changes in Gravel Bed Rivers:in Richards, K. S. (Ed.), River Channels: Environment and Process: Institute of British Geographers Special Publication, Basil Blackwell, Oxford, p. 159–178.

    Google Scholar 

  • Boothroyd, J. C. and Ashley, G., 1975, Processes, Bar Morphology, and Sedmentary Structures on Braided Outwash Fans, North-Eastern Gulf of Alaska;in Jopling, A. V. and McDonald, B. C. (Eds.), Glaciofluvial and Glaciolacustrine Sedimentation: Soc. Econ. Paleon. Min., Special Publication 23, p. 193–222.

  • Bray, D. I., 1982, Flow Resistance in Gravel-Bed Rivers:in Hey, R. D.; Bathurst, J. C.; and Thornes, C. R. (Eds.), Gravel-Bed Rivers: John Wiley & Sons, Chichester, p. 109–133.

    Google Scholar 

  • Brayshaw, A. C., 1984, The Characteristics and Origin of Cluster Bedforms in Coarse-Grained Alluvial Channels;in Koster, E. H. and Stell, R. H. (Eds.), The Sedimentology of Gravel and Conglomerates: Canad. Soc. Pet. Geol. Mem., v. 10, p. 77–85.

  • Brayshaw, A. C., 1985, Bed Microtopography and Entrainment Thresholds in Gravel-Bed Rivers: Bull. Geol. Soc. Amer., v. 96, p. 218–223.

    Google Scholar 

  • Brayshaw, A. C.; Frostick, L. E.; and Reid, I., 1983, The Hydrodynamics of Particle Clusters and Sediment Entrainment in Coarse Alluvial Channels: Sedimentology, v. 30, p. 137–143.

    Google Scholar 

  • Burrough, P. A., 1983a, Multiscale Sources of Spatial Variation in Soil. I. The Application of Fractal Concepts to Nested Levels of Soil Variation: Jour. Soil Sci., v. 34, p. 577–597.

    Google Scholar 

  • Burrough, P. A., 1983b, Multiscale Sources of Spatial Variation in Soil. II. A non-Brownian Fractal Model and its Application in Soil Survey: Jour. Soil Sci., v. 34, p. 599–620.

    Google Scholar 

  • Burrough, P. A., 1984, The Application of Fractal Ideas to Geophysical Phenomena: The Jour. Math. Appl., v. 20, p. 36–42.

    Google Scholar 

  • Crickmore, M. J., 1970, Effect of Flume Width on Bed-Form Characteristics: Jour. Hydraul. Div. Amer. Soc. Civ. Eng., v. 96, p. 473–496.

    Google Scholar 

  • Culling, W. E. H., 1986a, Highly Erratic Spatial Variability of soil-pH on Iping Common, West Sussex: Catena, v. 13, p. 81–98.

    Google Scholar 

  • Culling, W. E. H., 1986b, On Hurst Phenomena in the Landscape: Trans., Jap. Geomorph. Union, v. 7, p. 221–243.

    Google Scholar 

  • Culling, W. E. H. and Datko, M., 1987, The Fractal Geometry of the Soil-Covered Landscape: Earth Surf. Proc. Landforms, v. 12, p. 369–385.

    Google Scholar 

  • Einstein, H. A. and Banks, R. B., 1950, Fluid Resistance of Composite Roughness: Trans. Amer. Geophys. Union, v. 31, p. 603–610.

    Google Scholar 

  • Einstein, H. A. and Barbarossa, N. L., 1952, River Channel Roughness: Transact. Amer. Soc. Civ. Eng., v. 117, p. 1121–1146.

    Google Scholar 

  • Engelund, F. and Fredsoe, J., 1982, Sediment Ripples and Dunes: Ann. Rev. Fluid Mech., v. 14, p. 13–37.

    Google Scholar 

  • Fredsoe, J., 1974, On the Development of Dunes in Erodible Channels: Jour. Fluid Mech., v. 64, p. 1–16.

    Google Scholar 

  • Hey, R. D., 1979, Flow Resistance in Gravel-Bed Rivers: Jour. Hydraul. Div. Amer. Soc. Civ. Eng., v. 105, p. 365–379.

    Google Scholar 

  • Hipel, K. W. and McLeod, A. I., 1978, Preservation of the Rescaled Adjusted Range. 3. Fractional Gaussian Noise Algorithms: Water Resour. Res., v. 14, p. 517–518.

    Google Scholar 

  • Jain, S. C. and Kennedy, J. F., 1974, The Spectral Evolution of Sedimentary Bedforms: Jour. Fluid Mech., v. 63, p. 301–314.

    Google Scholar 

  • Journel, A. G. and Huijbregts, C., 1978, Mining Geostatistics: Academic Press, London, 600 p.

    Google Scholar 

  • Kennedy, J. F., 1969, The Formation of Sediment Ripples, Dunes, and Antidunes: Ann. Rev. Fluid Mech., v. 1, p. 147–168.

    Google Scholar 

  • Koster, E. H., 1978, Transverse Ribs: Their Characteristics, Origin, and Paleohydraulic Significance,in Miall, A. D. (Ed.), Fluvial Sedimentology: Canadian Society of Petroleum Geologists Memoir 5, p. 161–186.

  • Laronne, J. B. and Carson, M. A., 1976, Interrelationships Between Bed Morphology and Bed Material Transport for a Small Gravel Bed Channel: Sedimentology, v. 23, p. 67–85.

    Google Scholar 

  • Leopold, L. B.; Wolman, M. G.; and Miller, J. P., 1964, Fluvial Processes in Geomorphology: Freeman, San Francisco, 522 p.

    Google Scholar 

  • Limerinos, J. T., 1970, Determination of the Manning Coefficient from Measured Bed Roughness in Natural Channels: U.S. Geol. Sur. Water-Supply Paper, 1898-B.

  • Mandelbrot, B. B., 1965, Une Classe de Processus Stochastiques Homothétiques à Soi: Application à la loi Climatique de H. E. Hurst: Comptes Rendus (Paris), v. 260, p. 3274–3277.

    Google Scholar 

  • Mandelbrot, B B., 1967, How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension: Science, v. 156, p. 636–638.

    Google Scholar 

  • Mandelbrot, B. B., 1975, Stochastic Models for the Earth's Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number-Area Rule for Islands: Proc. National Acad. Sci. (USA), v. 72, p. 3825–3828.

    Google Scholar 

  • Mandelbrot, B. B., 1977, Fractals: Form, Chance and Dimension: Freeman, San Francisco, 361 p.

    Google Scholar 

  • Mandelbrot, B. B., 1982, The Fractal Geometry of Nature: Freeman, San Francisco, 460 p.

    Google Scholar 

  • Mandelbrot, B. B. and Wallis, J. R., 1969, Computer Experiments with Fractional Gaussian Noises. Part 3, Mathematical Appendix: Water Resour. Res., v. 5, p. 260–267.

    Google Scholar 

  • Mandelbrot, B. B. and Van Ness, J. W., 1968, Fractional Brownian Motions, Fractional Noises and Applications: Soc. Ind. Appl. Math. Rev., v. 10, p. 422–437.

    Google Scholar 

  • Mark, D. M., 1984, Fractal Dimension of a Coral Reef at Ecological Scales: A Discussion: Marine Ecol. Prog. Ser., v. 14, p. 293–294.

    Google Scholar 

  • Mark, D. M. and Aronson, P. B., 1984, Scale Dependent Fractal Dimensions of Topographic Surfaces: An Empirical Investigation with Applications in Geomorphology and Computer Mapping: Math. Geol., v. 16, p. 671–683.

    Google Scholar 

  • Matheron, G., 1965, Les Variables Régionalisées et Leur Estimation: Masson, Paris; 305 p.

    Google Scholar 

  • McBratney, A. B. and Webster, R., 1986, Choosing Functions for Semi-Variograms of Soil Properties and Fitting Them to Sampling Estimates: Jour. Soil Sci., v. 37, p. 617–639.

    Google Scholar 

  • McDonald, B. C. and Banerjee, I., 1971, Sediments and Bed Forms on a Braided Outwash Plain: Can. Jour. Earth Sci., v. 8, p. 1282–1301.

    Google Scholar 

  • Naden, P. M., 1987, Modelling Gravel-Bed Topography from Sediment Transport: Earth Surf. Proc. Landforms: v. 12, p. 353–367.

    Google Scholar 

  • Naden, P. M. and Brayshaw, A. C., 1987, Small and Medium Scale Bedforms in Gravel-Bed Rivers,in Richards, K. S. (Ed.), River Channels: Environment and Process: Institute of British Geographers Special Publication; Basil Blackwell, Oxford, p. 249–271.

    Google Scholar 

  • Nordin, C. F., 1971, The Statistical Properties of Dune Profiles: U.S. Geol. Sur. Prof. Papers, 562-F, 41 p.

  • Nordin, C. F. and Algert, J. H., 1966, Spectral Analysis of Sand Waves: Jour. Hydraul. Div. Amer. Soc. Civ. Eng., v. 92, p. 95–114.

    Google Scholar 

  • Numerical Algorithms Group, 1977, NAG Library Manual. Mark 6: Numerical Algorithms Group Ltd., Oxford.

    Google Scholar 

  • Oliver, M. A. and Webster, R., 1986, Semi-Variogram for Modelling the Spatial Pattern of Landform and Soil Properties: Earth Surf. Proc. Landforms, v. 11, p. 491–504.

    Google Scholar 

  • Orey, S., 1970, Gaussian Sample Functions and the Hausdorff Dimension of Level Crossings: Z. Wahrscheinlichkeitstheorie Verw. Geb., v. 15, p. 249–256.

    Google Scholar 

  • Orford, J. D. and Whalley, W. B., 1983, The Use of the Fractal Dimension to Quantify the Morphology of Irregular Shaped Particles: Sedimentology, v. 30, p. 655–668.

    Google Scholar 

  • Plate, E., 1971, Limitations of Spectral Analysis in the Study of Wind-Generated Water Surface Waves,in Proceedings of the 1st International Symposium on Stochastic Hydraulics, Pittsburgh, Pennsylvania, p. 522–539.

  • Pratt, C. J. and Smith, K. V. H., 1972, Ripple and Dunes Phases in a Narrowly Graded Sand: Jour. Hydraul. Div. Amer. Soc. Civ. Eng., v. 98, p. 859–873.

    Google Scholar 

  • Reid, I.; Frostick, L. E.; and Layman, J. T., 1985, The Incidence and Nature of Bedload Transport During Flood Flows in Coarse-Grained Alluvial Channels: Earth Surf. Proc. Landforms, v. 10, p. 33–44.

    Google Scholar 

  • Reid, I. and Frostick, L. E., 1986, Dynamics of Bedload Transport in Turkey Brook, a Coarse-Grained Alluvial Channel: Earth Surf. Process. Landforms, v. 11, p. 143–155.

    Google Scholar 

  • Richards, K. S., 1982, Rivers. Form and Process in Alluvial Channels: Methuen, London, 358 p.

    Google Scholar 

  • Richards, K. S. and Robert, A., 1986, Laboratory Experiments with the HR Multipurpose Profile Follower on a Rippled Sand Bed: Department of Geography, University of Cambridge, 22 p.

  • Robert, A. and Richards, K. S., in press, On the Modelling of Sand Bedforms Using the Semivariogram: Earth Surf. Process. Landforms.

  • Simons, D. B. and Richardson, E. V., 1966, Resistance to Flow in Alluvial Channels: U.S. Geol. Sur. Prof. Paper, 422-J., 61 p.

  • Simons, D. B.; Richardson, E. V.; and Nordin, C. F., 1965, Bedload Equation for Ripples and Dunes: U.S. Geol. Sur. Prof. Paper, 462-H., 9 p.

  • Thomes, J. B., 1970, The Hydraulic Geometry of Stream Channels in the Xingu-Araguaia Headwaters: Geog. Jour., v. 136, p. 376–382.

    Google Scholar 

  • Yalin, M. S., 1977, Mechanics of Sediment Transport, 2nd Ed.: Pergamon Press, Oxford, 298 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, A. Statistical properties of sediment bed profiles in alluvial channels. Math Geol 20, 205–225 (1988). https://doi.org/10.1007/BF00890254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00890254

Key words

Navigation