Skip to main content
Log in

Drugs for the prevention of coronary thrombosis: From an animal model to clinical trials

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Platelets contribute to the progression of atherosclerotic disease and also to partial or complete thrombotic occlusion of stenosed human coronary or cerebral arteries. Thus, there is considerable interest in being able to measure in vivo or ex vivo platelet function or level of activity. Currently, platelet activity and the platelet inhibitory effect of drugs can be assessed ex vivo or in vitro by platelet aggregometry. There is also an experimental animal model (the cyclic flow, or Folts, model) for studying the interactions of platelets with damaged and stenosed arterial walls. This model was first used to show that aspirin can prevent coronary thrombosis in stenosed canine coronary arteries and is fairly predictive in determining which drugs are likely to inhibit platelet activity in vivo. It is also useful in identifying which drugs may be beneficial in ameliorating unstable angina and preventing coronary thrombosis. Studies with this model predict that aspirin, sulfinpyrazone, the monoclonal antibody 7E3 to the platelet glycoprotein GpIIb-IIIa fibrinogen receptor, arginine-glycine-aspartic acid peptide mimetics, or clopidogrel (an analogue of ticlopidine) would inhibit platelet-mediated thrombosis in patients with coronary or cerebral artery stenosis. The model also predicts that heparin or dipyridamole alone would not prevent platelet-mediated arterial thrombosis. Finally, studies with the cyclic model suggest that while serotonin receptor blockers, alpha-adrenergic blockade, or infusions of prostacyclin (or its analogue, Iloprost) would inhibit platelet activity, the resulting hypotension would severely limit the clinical usefulness of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woolf N, Davies MJ. Interrelationship between atherosclerosis and thrombosis. In: Fuster V, Verstraete M, eds.Thrombosis in Cardiovascular Disorders. Philadelphia: WB Saunders, 1992:50–55.

    Google Scholar 

  2. Hennekens CH, Buring JE, Sandercock P, et al. Aspirin and other antiplatelet agents in the secondary and primary prevention of cardiovascular disease.Circulation 1989;80:749–756.

    PubMed  Google Scholar 

  3. Mustard JF, Kinlough-Rathbone R, Packham MA. The vessel wall in thrombosis. In: Colman RW, Hirsh J, Marder VJ, et al., eds.Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia: JB Lippincott, 1987:1073–1088.

    Google Scholar 

  4. Packham MA, Mustard JF. The role of platelets in the development and complications of atherosclerosis.Semin Hematol 1986;23:8–26.

    PubMed  Google Scholar 

  5. Tyers M, Haslan RJ, Rachubinski RA, et al. Molecular analysis of pleckstrin: The major protein kinase C substrate of platelets.J Cell Biochem 1989;40:133–145.

    PubMed  Google Scholar 

  6. Folts JD, Rowe GG. Epinephrine reverses aspirin inhibition of in vivo platelet thrombus formation in stenosed dog coronary arteries.Thromb Res 1988;50:507–516.

    PubMed  Google Scholar 

  7. Renaud S, Morazain R, Godsey F, et al. Nutrients, platelet function and composition in nine groups of French and British farmers.Atherosclerosis 1986;60:37–48.

    PubMed  Google Scholar 

  8. Hamet P, Tremblay J, Sugimoto H. Platelets in hypertension and peripheral vascular disease. In: Longenecker GL, ed.The Platelets: Physiology and Pharmacology. New York: Academic Press, 1985:367–381.

    Google Scholar 

  9. Folts JD, Bonebrake FC. The effects of cigarette smoke and nicotine on platelet plugging in stenosed dog coronary arteries: Inhibition with phentolamine.Circulation 1982;65:465–469.

    PubMed  Google Scholar 

  10. Coller BS. Platelets in cardiovascular thrombosis and thrombolysis. In: Fozzard HA et al., eds.The Heart and Cardiovascular System. New York: Raven Press, 1992:219–221.

    Google Scholar 

  11. Maalej N, Folts JD. Aspirin treatment does not protect against acute platelet thrombosis in high shear coronary artery stenosis: Quantitative assessment (abstract).Thromb Haemost 1993;69:588.

    Google Scholar 

  12. Wintrobe MM.Clinical Hematology. Philadelphia: Lea & Febiger, 1967:329.

    Google Scholar 

  13. Harker LA, Slichter SJ. The bleeding time as a screening test for evaluation of platelet function.N Engl J Med 1972;287:155–159.

    PubMed  Google Scholar 

  14. Born GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal.Nature 1962;194:927.

    PubMed  Google Scholar 

  15. Ingerman-Wojenski CM, Silver MJ. A quick method for screening platelet dysfunctions using the whole blood lumiaggregometer.Thromb Haemost 1984;51:154–156.

    PubMed  Google Scholar 

  16. Folts JD, Rowe GG. Cyclical reductions in coronary blood flow in coronary arteries with fixed partial obstruction and their inhibition with aspirin (abstract).Fed Proc 1974;33:413.

    Google Scholar 

  17. Bush LR, Shebuski RJ. In vivo models of arterial thrombosis and thrombolysis.FASEB J 1990;4:3087–3098.

    PubMed  Google Scholar 

  18. Roux SP, Sakariassen KS, Turitto VT, et al. Effect of aspirin and epinephrine on experimentally induced thrombogenesis in dogs: A parallelism between in vivo and ex vivo thrombosis models.Arterioscl Thromb 1991;11:1182–1191.

    PubMed  Google Scholar 

  19. Samama CM, Bonnin P, Bonneau M, et al. Comparative arterial antithrombotic activity of clopidogrel and acetyl salicyclic acid in the pig.Thromb Haemost 1992;68:500–505.

    PubMed  Google Scholar 

  20. Coller BS. Inhibitors of the platelet glycoprotein IIb/IIIa receptor as conjunctive therapy for coronary artery thrombolysis.Cor Art Dis 1992;3:1016–1029.

    Google Scholar 

  21. Folts JD, Crowell EB, Rowe GG. Platelet aggregation in partially obstructed coronary arteries and their inhibition with aspirin (abstract).Clin Res 1974;22:595.

    Google Scholar 

  22. Folts JD, Crowell EB, Rowe GG. Platelet aggregation in partially obstructed vessels and their elimination with aspirin.Circulation 1976;54:365–370.

    PubMed  Google Scholar 

  23. Uchida Y, Yoshimoto N, Murao S. Cyclic fluctuations in coronary blood pressure and flow induced by coronary artery constriction.Jpn Heart J 1975;16:454–464.

    PubMed  Google Scholar 

  24. Raeder EA, Verrier RL, Lown B. Influence of the automatic nervous system on coronary blood flow during partial stenosis.Am Heart J 1983;104:249–253.

    Google Scholar 

  25. Folts JD, Rowe GG. Acute thrombus formation in stenosed pig coronary arteries, causing sudden death by ventricular fibrillation (abstract).Circulation 1983;68(Suppl III):III264.

    Google Scholar 

  26. Coller BS, Folts JD, Scudder LE, et al. Antithrombotic effect of a monoclonal antibody to the platelet glycoprotein IIb/IIIa receptor in an experimental animal model.Blood 1986;68:783–786.

    PubMed  Google Scholar 

  27. Coller BS, Folts JD, Smith SR, Scudder LE, et al. Abolition of in vivo platelet thrombus formation in primates with monoclonal antibodies to the platelet GPIIb/IIa receptor: Correlation with bleeding time, platelet aggregation and blockade of GPIIb/IIIa receptors.Circulation 1989;80:1766–1774.

    PubMed  Google Scholar 

  28. Schumacher WA, Goldenberg HJ, Harris DN, et al. Effect of thromboxane receptor antagonists on renal artery thrombosis in the cynomologus monkey.J Pharmacol Exp Ther 1987;243:460–466.

    PubMed  Google Scholar 

  29. Torr S, Noble MIM, Folts JD. Inhibition of acute platelet thrombosis formation in stenosed canine coronary arteries by the specific serotonin S2 receptor antagonist ritanserin.Cardiovasc Res 1990;24:465–470.

    PubMed  Google Scholar 

  30. Nichols TC, Bellinger DA, Johnson TA, et al. Von Willebrand's disease prevents occlusive thrombosis in stenosed and injured porcine coronary arteries.Circ Res 1986;59:15–26.

    PubMed  Google Scholar 

  31. Golino P, Cappelli-Bigazzi M, Ambrosio G, et al. Endothelium-derived relaxing factor modulates platelet aggregation in an in vivo model of recurrent platelet activation.Circ Res 1992;71:1447–1456.

    PubMed  Google Scholar 

  32. Folts JD. An in vivo model of experimental arterial stenosis, intimal damage, and periodic thrombosis.Circulation 1991;83(Suppl 4):3–14.

    Google Scholar 

  33. Hill DS, Smith SR, Folts JD. The rabbit as a model for carotid artery stenosis and periodic acute thrombosis (abstract).Fed Proc 1987;46:421.

    Google Scholar 

  34. Folts JD, Detmer D, Nadler R. Possible platelet thrombi formation in dog and human femoral arteries.Tex Heart Inst J 1982;9:19–27.

    PubMed  Google Scholar 

  35. Eichorn EJ, Grayburn PA, Willerson JT, et al. Spontaneous alterations in coronary blood flow velocity before and after coronary angioplasty in patients with severe angina.J Am Coll Cardiol 1991;17:43–52.

    PubMed  Google Scholar 

  36. Folts JD. A model of experimental arterial platelet thrombosis, platelet inhibitors, and their possible clinical relevance: An update.Cardiovasc Rev Rep 1990;11:10–26.

    Google Scholar 

  37. Badimon L, Badimon JJ, Fuster V. Pathogenesis of thrombosis. In: Fuster V, Verstraete M, eds.Thrombosis in Cardiovascular Disorders. Philadelphia: WB Saunders, 1992;24:327.

    Google Scholar 

  38. Folts JD. Experimental arterial platelet thrombosis, platelet inhibitors, and their possible clinical relevance.Cardiovasc Rev Rep 1982;3:370–382.

    Google Scholar 

  39. Mehta J, ed.Platelets and Prostaglandins in Cardiovascular Disease. Mt. Kisco, NY: Futura, 1981.

    Google Scholar 

  40. Keller J, Folts JD. Relative effects of cigarette smoke and ethanol on acute platelet thrombus formation in stenosed coronary artery.Cardiovasc Res 1988;22:73–78.

    PubMed  Google Scholar 

  41. Sherry S. Aspirin and antiplatelet drugs: The clinical approach.Cardiovasc Rev Rep 1984;5:1208–1219.

    Google Scholar 

  42. Ikeda H, Koga Y, Kuwano K, et al. Cyclic flow variations in a conscious dog model of coronary artery stenoses and endothelial injury correlate with acute ischemic heart disease syndromes in humans.J Am Coll Cardiol 1993;21:1008–1017.

    PubMed  Google Scholar 

  43. Davies MJ, Thomas AC, Knapman PA. Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death.Circulation 1986;73:418–427.

    PubMed  Google Scholar 

  44. Ezratty AM, Loscalzo J. New approaches to antiplatelet therapy.Blood Coagul Fibrinolysis 1991;2:317–327.

    PubMed  Google Scholar 

  45. Lewis HD, Davis JW, Archibald DG, et al. Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina. Results of a Veterans Administration Cooperative Study.N Engl J Med 1983;309:396–403.

    PubMed  Google Scholar 

  46. Cairns JA, Gent M, Singer J, et al. Aspirin, sulfinpyrazone or both in unstable angina. Results of a Canadian multicenter trial.N Engl J Med 1985;313:1369–1375.

    PubMed  Google Scholar 

  47. Theroux P, Ouimet H, McCans J. Aspirin, heparin or both to treat acute unstable angina.N Engl J Med 1988;319:1105–1111.

    PubMed  Google Scholar 

  48. Folts JD, Beck RA. Inhibition of platelet plugging in stenosed dog coronar arteries with sulfinpyrazone. In: McGregor M, Mustard JF, Oliver MF, Sherry S, eds.Cardiovascular Actions of Sulfinpyrazone: Basic and Clinical Research 1980:211–228.

  49. The Anturane Reinfarction Trial Research Group. Sulfinpyrazone in the prevention of cardiac death after myocardial infarction: The Anturane Reinfarction Trial.N Engl J Med 1978;298:289–295.

    Google Scholar 

  50. Polli E, Cortellano M, Baroni L, et al. Anturane Reinfarction Italian Study: Sulphinpyrazone in post-myocardial infarction.Lancet 1982;1:237–242.

    PubMed  Google Scholar 

  51. Bush LR, Campbell WB, Buja LM, et al. Effects of the selective thromboxane synthesis inhibitor dazoxiben on variations in cyclic blood flow in stenosed canine coronary arteries.Circulation 1984;69:1161–1170.

    PubMed  Google Scholar 

  52. Golino P, Buja LM, Ashton JH, et al. Effect of thromboxane and serotonin receptor antagonists on intracoronary platelet deposition in dogs with experimentally stenosed coronary arteries.Circulation 1988;78:701–711.

    PubMed  Google Scholar 

  53. Yao S, Rosolowsky M, Anderson HV, et al. Combined thromboxane A2 synthetase inhibition and receptor blockade are effective in preventing spontaneous and epinephrine-induced canine coronary cyclic flow variations.J Am Coll Cardiol 1990;16:705–713.

    PubMed  Google Scholar 

  54. Aiken JW, Shebuski RJ, Miller OV, et al. Endogenous prostacyclin contributes to the efficacy of a thromboxane synthetase inhibitor for preventing coronary artery thrombosis.J Pharmacol Exp Ther 1981;219:299–308.

    PubMed  Google Scholar 

  55. Aspirin for heart patients.FDA Drug Bull 1985;15:34–36.

  56. Torr S, Noble MIM, Folts JD. Inhibition of acute platelet thrombosis formation in stenosed canine coronary arteries by a specific serotonin 5HT2 receptor antagonist ritanserin.Cardiovasc Res 1990;24:465–470.

    PubMed  Google Scholar 

  57. Ashton JH, Benedict CR, Fitzgerald C, et al. Serotonin as a mediator of cyclic flow variations in stenosed canine coronary arteries.Circulation 1986;73:572–578.

    PubMed  Google Scholar 

  58. Kornecki E, Erlich YH, Lenox RH. Platelet-activating-factor-induced aggregation of human platelets specifically inhibited by triazolobenzodiazepines.Science 1984;226:1454–1456.

    PubMed  Google Scholar 

  59. Torr SR, Haskel EJ, von Voigtlander PF, et al. Inhibition of cyclic flow variations and reocclusion after thrombolysis in dogs by a novel antagonist of platelet-activating factor.J Am Coll Cardiol 1991;18:1804–1810.

    PubMed  Google Scholar 

  60. Apprill P, Schmitz JM, Campbell WB, et al. Cyclic blood flow variations induced by platelet-activating factor in stenosed canine coronary arteries despite inhibition of thromboxane synthetase, serotonin receptors, and α-adrenergic receptors.Circulation 1985;72:397–405.

    PubMed  Google Scholar 

  61. Owen NE, Feinberg H, Le Breton GC. Epinephrine induces Ca2+ uptake in human blood platelets.Am J Physiol 1980;239:H483-H488.

    PubMed  Google Scholar 

  62. Ardlie NG, Cameron HA, Garrett J. Platelet activation by circulating levels of hormones: A possible link in coronary heart disease.Thromb Res 1984;36:315–322.

    PubMed  Google Scholar 

  63. Rao GH, Escolar G, White JG. Epinephrine reverses the inhibitor influence of aspirin on platelet-vessel wall interactions.Thromb Res 1986;44:65–74.

    PubMed  Google Scholar 

  64. Bonebrake FC, Folts JD, Bertha BG. Inhibition of primary and secondary aggregation in stenosed dog coronary arteries with sulindac and phenoxybenzamine (abstract).Clin Res 1979;27:610.

    Google Scholar 

  65. Bush LR, Campbell WB, Kern K, et al. The effects of α2-adrenergic and serotonergic receptor antagonists on cyclic blood flow alterations in stenosed canine coronary arteries.Circ Res 1984;55:642–652.

    PubMed  Google Scholar 

  66. Bolli R, Brandon TA, Mace ML, et al. Influence of α-adrenergic blockade on platelet-mediated thrombosis in stenosed canine coronary arteries.Cardiovasc Res 1985;19:146–154.

    PubMed  Google Scholar 

  67. Ware JA, Smith M, Salzman EW. Synergism of platelet-aggregating agents.J Clin Invest 1987;80:267–271.

    PubMed  Google Scholar 

  68. Burroughs SF, Johnson GJ. Beta-lactam antibiotics inhibit agonist-stimulated platelet calcium influx.Thromb Haemostas 1993;69:503–508.

    Google Scholar 

  69. Ikeda Y, Handa M, Kamata T, et al. Transmembrane calcium influx associated with von Willebrand factor binding to GP Ib in the initiation of shear-induced platelet aggregation.Thromb Haemostas 1993;69:496–502.

    Google Scholar 

  70. Shanbaky NM, Ahn Y, Jy W, et al. Abnormal aggregation accompanies abnormal platelet Ca2+ handling in arterial thrombosis.Thromb Haemostas 1987;57:1–10.

    Google Scholar 

  71. Bertha BG, Folts JD. Inhibition of epinephrine-exacerbated coronary thrombus formation by prostacyclin in the dog.J Lab Clin Med 1984;103:204–214.

    PubMed  Google Scholar 

  72. Armstrong PW, Langevin LM, Watts DG. Randomized trial of prostacyclin infusion in acute myocardial infarction.Am J Cardiol 1988;61:455–457.

    PubMed  Google Scholar 

  73. Bugiardini R, Galvani M, Ferrini D, et al. Myocardial ischemia during intravenous prostacyclin administration: Hemodynamic findings and precautionary measures.Am Heart J 1987;113:234–240.

    PubMed  Google Scholar 

  74. Stein B, Fuster V. Clinical pharmacology of platelet inhibitors. In: Fuster V, Verstraete M, eds.Thrombosis in Cardiovascular Disorders. Philadelphia: WB Saunders, 1992:107.

    Google Scholar 

  75. Folts JD, Rowe GG. Dipyridamole alone or with low-dose aspirin neither inhibits thrombus formation in stenosed canine coronary arteries nor protects against renewal of thrombus formation by epinephrine.J Vasc Med Biol 1989;1:255–261.

    Google Scholar 

  76. Folts JD, Smith SR. Dipyridamole does not prevent platelet thrombus formation in stenosed canine coronary arteries (abstract).Clin Pharmacol Ther 1987;41:155.

    PubMed  Google Scholar 

  77. Fitzgerald GA. Dipyridamole.N Engl J Med 1987;316:1247–1257.

    PubMed  Google Scholar 

  78. Stamler JS, Loscalzo J. The antiplatelet effects of organic nitrates and related nitroso compounds in vitro and in vivo and their relevance to cardiovascular disorders.J Am Coll Cardiol 1991;18:1529–1536.

    PubMed  Google Scholar 

  79. Folts JD, Stamler J, Loscalzo J. Intravenous nitroglycerin infusion inhibits cyclic blood flow responses caused by periodic platelet thrombus formation in stenosed dog coronary arteries.Circulation 1990;83:2122–2127.

    Google Scholar 

  80. Rovin JD, Stamler JS, Loscalzo J, et al. Sodium nitropruside, an EDRF congener, elevates platelet cyclic GMP levels and inhibits epinephrine exacerbated in vivo platelet thrombus formation in stenosed canine coronary arteries.J Cardiovasc Pharmacol 1993;22:626–631.

    PubMed  Google Scholar 

  81. Loscalzo J. Antiplatelet and antithrombotic effects of organic nitrates.Am J Cardiol 1992;70:18B-22B.

    PubMed  Google Scholar 

  82. Keaney JF, Stamler JS, Scharfstein J, et al. NO forms a stable adduct with serum albumin that has potent antiplatelet properties in vivo (abstract).Clin Res 1992;40:194a.

    Google Scholar 

  83. Chirkov YY, Naujalis JI, Sage RE, et al. Antiplatelet effects of nitroglycerin in healthy subjects and in patients with stable angina pectoris.J Cardiovasc Pharmacol 1993;21:384–389.

    PubMed  Google Scholar 

  84. Lacoste LL, Lidon RM, Lam JYT, et al. The antithrombotic efficacy of nitroglycerin patches in coronary patients.J Am Coll Cardiol 1993;21:19a.

    Google Scholar 

  85. Yusuf S, MacMahon S, Collins R, et al. Effect of intravenous nitrates on mortality in acute myocardial infarction: An overview of the randomized trials.Lancet 1988;1:1088–1092.

    PubMed  Google Scholar 

  86. Bonebrake F, Bertha B, Folts JD. Calcium channel blockers do not inhibit acute platelet thrombus formation in stenosed canine coronary arteries (abstract).Clin Pharmacol Ther 1987;41:184.

    Google Scholar 

  87. Bonebrake FC, Bertha B, Folts JD, et al. Verapamil combined with aspirin for inhibiting epinephrine-stimulated platelet thrombus formation in stenosed canine coronary arteries.Cor Art Dis 1991;2:487–492.

    Google Scholar 

  88. Saltzberg MT, Folts JD, Thatcher JL. Synergistic effects of aspirin and either verapamil, diltiazem or nitrendipine in preventing epinephrine exacerbation of acute platelet thrombus formation in stenosed canine coronary arteries (abstract).Circulation 1988;78(Suppl II):II1296.

    Google Scholar 

  89. Folts JD, Hamilton JW, Stone CK. Potentiation of the antiplatelet effects of aspirin by the new calcium channel antagonist amlodipine. In: Godfraind T, Paoletti R, Vanhoutte PM, eds.Calcium Channel Blockers and Atherosclerosis: New Insights into Mechanisms. Milan, Italy and Houston, Texas: Fiovani Lorenzini Medical Foundation, 1993.

    Google Scholar 

  90. Chahine RA, Feldman RL, Giles TD, et al. Randomized placebo-controlled trial of amlodipine in vasospastic angina.J Am Coll Cardiol 1993;21:1365–1370.

    PubMed  Google Scholar 

  91. Abernethy DR, Gurkowska J, Lambert MD. Amlodipine in elderly hypertensive patients: Pharmacokinetics and pharmacodynamics.J Cardiovasc Pharmacol 1988;12(Suppl 7):567–571.

    Google Scholar 

  92. Gold HK, Gimple LW, Yasuda T, et al. Pharmacodynamic study of F(ab′)2 fragments of murine monoclonal antibody 7E3 directed against human platelet glycoprotein IIb/IIIa in patients with unstable angina pectoris.J Clin Invest 1990;86:651–659.

    PubMed  Google Scholar 

  93. Kleiman NS, Ohman EM, Keriakes DJ, et al. Profound platelet inactivation with 7E3 shortly after thrombolytic therapy for acute myocardial infarction: Preliminary results of the TAMI 8 trial (abstract).Circulation 1991;84:II522.

    Google Scholar 

  94. Jordan R, Knight DM, McDonough M, et al. A dramatic reduction of immunogenicity by humanizing the murine constant domain of 7E3 antiplatelet GPIIb/IIIa monoclonal antibody.Circulation 1994.

  95. Coller BS. Inhibitors of the platelet glycoprotein IIb/IIIa receptor as conjunctive therapy for coronary artery thrombolysis.Cor Art Dis 1992;3:1016–1029.

    Google Scholar 

  96. Strony JT, Folts JD, Adelman B. In vivo antiplatelet effect of Gly-Arg-Gly-Asp-Ser in the stenosed canine coronary artery occlusion model (abstract).Clin Res 1989;37:388a.

    Google Scholar 

  97. Nicholson NS, Panzer-Knodle SG, Salyers AK, et al. In vitro and in vivo effects of a peptide mimetic (SC-47643) of RGD as an antiplatelet and antithrombotic agent.Thromb Res 1991;62:567–578.

    PubMed  Google Scholar 

  98. McTavish D, Foulds C, Goa KL. Ticlopidine: An updated review of its pharmacology and therapeutic use in platelet-dependent disorders.Drugs 1990;40:238–259.

    PubMed  Google Scholar 

  99. Coller BS. Platelets in cardiovascular thrombosis and thrombolysis. In: Fossard HA, et al., eds.The Heart and Cardiovascular System. New York: Raven Press, 1991:219–273.

    Google Scholar 

  100. Balsano F, Risson P, Violi F, et al. Antiplatelet treatment with ticlopidine in unstable angina. A controlled multicenter clinical trial.Circulation 1990;82:17–26.

    PubMed  Google Scholar 

  101. Yao SK, McNatt J, Cui K, et al. ADP and thromboxane A2 are important mediators of cyclic flow variations in nonhuman primate arteries.J Am Coll Cardiol 1993;21:110a.

    Google Scholar 

  102. Mills DCB, Puri R, Hu CJ, et al. Clopidogrel inhibits the binding of ADP analogues to the receptor mediating inhibition of platelet adenylate cyclase.Arterioscler Thromb 1992;12:430–436.

    PubMed  Google Scholar 

  103. Anderson HV, Revana M, Rosales O, et al. Intravenous administration of monoclonal antibody to the platelet GPIIb/IIIa receptor to treat abrupt closure during coronary angioplasty.Am J Cardiol 1992;69:1373–1376.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by NIH grants PO1 HL29586-09 and the Rennebohm Foundation of Wisconsin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folts, J.D. Drugs for the prevention of coronary thrombosis: From an animal model to clinical trials. Cardiovasc Drug Ther 9 (Suppl 1), 31–43 (1995). https://doi.org/10.1007/BF00878571

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878571

Key Words

Navigation