Skip to main content
Log in

An approximate computation of infrared radiative fluxes in a cloudy atmosphere

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

A two-stream approximation is applied to the equation of infrared (IR) radiative transfer in order to compute the detailed structure of fluxes and cooling/heating rates in inhomogeneous, cloudy atmospheres. The spectrum between 4 and 400 μm is split into 50 bands, and absorption of water vapour, uniformly mixed gases, ozone, water vapour polymers and water droplets are taken into account. Allowance is made for scattering by water droplets in the atmospheric window region (8–12.8 μm) where the delta function approximation is used. The backward scattering coefficient is calculated from the asymmetry parameter by means of a new simple formula. The model is compared to other radiative transfer schemes and some applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chandrasekhar, S. (1960),Radiative Transfer (Dover Publ. Ind., New York) 393 pp.

    Google Scholar 

  • Cox, S. K. (1973),Infra-red Heating Calculations with a Water Vapour Pressure Broadened Continuum, Quart. J. R. Met. Soc.99, 669–679.

    Google Scholar 

  • Graßl, H. (1976),A New Type of Absorption in the Atmospheric Infrared Window due to Water Vapor Polymers, Beitr. Phys. Atmosph.49, 225–236.

    Google Scholar 

  • Gruenzel, R. (1978),Mathematical Expressions for Molecular Absorption in Lowtran B, Appl. Opt.17, 2591–2593.

    Google Scholar 

  • Hale, G. M., andQuerry, M. R. (1973),Optical Constants of Water in the 200 nm to 200 m Wavelength Region, Appl. Optics12, 555–563.

    Google Scholar 

  • Hansen, J. (1969),Exact and Approximate Solutions for Multiple Scattering by Cloudy and Hazy Planetary Atmospheres, J. Atmos. Sci.27, 943–949.

    Google Scholar 

  • Hansen, J. E. (1971),Multiple Scattering of Polarized Light in Planetary Atmospheres. Part 2: Sunlight Reflected by Terrestrial Water Clouds, J. Atmos. Sci.28, 1400–1426.

    Google Scholar 

  • IAMAP (1977),Report of the IAMAP Radiation Commission Working Group on a Standard Radiation Atmosphere (Seattle, Wash., 29 August 1977).

  • Janßen, Th. (1975),Abkühlung der planetarischen Grenzschicht durch Wärmestrahlung, Diplomarbeit am Institut für Geophysik und Meteorologie der Universität zu Köln.

  • Jung, H. J. (1975),Berechnung infraroter Strahlungsdivergenzen in wolkenfreien und bewölkten Atmosphärenmodellen, Diplomarbeit am Institut für Geophysik und Meteorologie der Universität zu Köln.

  • Kahn, P. H., andBusinger, J. A. (1979),The Effect of Radiative Flux Divergence on Entrainment of a Saturated Convective Boundary Layer, Quart. J. R. Met. Soc.105, 303–305.

    Google Scholar 

  • Kondratyev, K. Ya. (1969),Radiation in the Atmosphere (Academic Press, New York-London) 912 pp.

    Google Scholar 

  • Rorb, G. J., Welch, R. M., andZdunkowski, W. G. (1975),An Approximate Method for the Determination of Infrared Radiative Fluxes in Scattering and Absorbing Media, Beitr. Phys. Atmosph.48, 85–94.

    Google Scholar 

  • Lenoble, J. (1975),Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere, Vol. I, IAMAP Radiation Commission.

  • Lilly, D. K., andSchubert, W. H. (1980),The Effects of Radiative Cooling in a Cloud Topped Mixed Layer, J. Atmos. Sci.37, 482–487.

    Google Scholar 

  • Pierluissi, J. H., Tomiyama, K., andGomez, R. (1979),Analysis of the Lowtran Transmission Functions, Appl. Opt.18, 1607–1612.

    Google Scholar 

  • Platt, C., Reynolds, D., andAbshire, N. (1980),Satellite and Lidar Observations of the Albedo, Emittance and Optical Depth of Cirrus Compared to Model Calculations, Mon. Wea. Rev.108, 195–204.

    Google Scholar 

  • Pollard, R. T. (1978),The Joint Air-Sea Interaction Experiment—Jasin 1978, Bull. Amer. Meteor. Soc.59, 1310–1318.

    Google Scholar 

  • Potter, J. F. (1970),The Delta Function Approximation in Radiative Transfer Theory, J. Atmos. Sci.27, 943–949.

    Google Scholar 

  • Randall, D. A. (1980),Entrainment into a Stratocumulus Layer with Distributed Radiative Cooling, J. Atmos. Sci.37, 148–159.

    Google Scholar 

  • Roach, W. T., andSlingo, A. (1979),A High Resolution Radiative Transfer Scheme to Study the Interaction of Radiation with Cloud, Quart. J. R. Met. Soc.105, 603–614.

    Google Scholar 

  • Schaller, E. (1979),A Delta-two-stream Approximation in Radiative Flux Calculations, Beitr. Phys. Atmosph.52, 17–26

    Google Scholar 

  • Schaller, E. (1980),Die Rolle von Strahlungsprozessen in einem Modell für abgehobene Inversionen, Bericht des Deutschen Wetterdienstes Nr. 151.

  • Selby, J., Kneizys, F., Chetwynd, J., andMcClatchey, R. (1978),Atmospheric Transmittance/Radiance: Computer Code Lowtran 4, AFGL-TR-78-0053, Air Force Geophysics Laboratory, Hanscom Mass.

    Google Scholar 

  • Slingo, A., Brown, R., andWrench, C. L. (1980),A Field Study of Nocturnal Stratocumulus: III. High Resolution Radiative and Microphysical Observations, submitted to Quart. J. R. Met. Soc.

  • Stephens, G. (1980),Radiative Properties of Cirrus Clouds in the Infrared Region J. Atmos. Sci.37, 435–446.

    Google Scholar 

  • Wang, W., andDomoto, G. A. (1974),The Radiative Effect of Aerosols in the Earth's Atmosphere, J. Appl. Meteor.13, 521–534.

    Google Scholar 

  • Widger, W. K., andWoodall, M. P. (1976),Integration of the Planck Blackbody Radiation Function, Bull. Amer. Meteor. Soc.57, 1217–1219.

    Google Scholar 

  • Wiscombe, W. J., andGrams, G. W. (1976),The Backscattered Fraction in Two-Stream Approximations, J. Atmos. Sci.33, 2440–2451.

    Google Scholar 

  • Yueh, W. R., andChameides, W. L. (1979),A Perturbative Treatment of Aerosol Scattering of Infrared Radiation, J. Atmos. Sci.36, 1997–2005.

    Google Scholar 

  • Zdunkowski, W. G., Korb, G. J., andDavis, C. T. (1974),Radiative Transfer in Model Clouds of Variable and Height Constant Liquid Water Content as Computed by Approximate and Exact Methods, Beitr. Phys. Atmosph.47, 157–186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmetz, J., Raschke, E. An approximate computation of infrared radiative fluxes in a cloudy atmosphere. PAGEOPH 119, 248–258 (1980). https://doi.org/10.1007/BF00877764

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877764

Key words

Navigation