Skip to main content
Log in

Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake. Mittlerer Buchensee, West-Germany

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

During 1986 planktonic primary production and controlling factors were investigated in a small (A0 = 11.8 · 103 m2, Zmax = 11.5 m) meromictic kettle lake (Mittlerer Buchensee). Annual phytoplankton productivity was estimated to ca 120 gC · m−2 · a−1 (1,42 tC · lake−1 · a−1). The marked thermal stratification of the lake led to irregular vertical distributions of chlorophylla concentrations (Chla) and, to a minor extent, of photosynthesis (Az). Between the depths of 0 to 6 m low Chla concentrations (< 7 mg · m−3) and comparatively high background light attenuation (kw = 0,525 m−1, 77% of total attenuation due to gelbstoff and abioseston) was found. As a consequence, light absorption by algae was low (mean value 17,4%) and self-shading was absent.

Because of the small seasonal variation of Chla concentrations, no significant correlation between Chla and areal photosynthesis (ΣA) was observed. Only in early summer (June–July) biomass appears to influence the vertical distribution of photosynthesis on a bigger scale. Around 8 m depth, low-light adapted algae and phototrophic bacteria formed dense layers. Due to low ambient irradiances, the contribution of these organisms to total primary productivity was small. Primary production and incident irradiance were significantly correlated with each other (r2 = 0.68). Although the maximum assimilation number (Popt) showed a clear dependence upon water temperature (Q10 = 2.31), the latter was of minor importance to areal photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, G., 1970. Limnological studies of Lake Norrviken, a eutrophicated Swedish lake. Schweiz. Z. Hydrol. 32: 353–396.

    Google Scholar 

  • Bannister, T. T., 1974. Production equations in terms of chlorophyll concentration, quantum yield, and upper limit to production. Limnol. Oceanogr. 19: 1–12.

    Google Scholar 

  • Barthelmeß, T., 1988. Sukzession periphytischer und planktischer Ciliaten und Zooflagellaten im «Mittleren Buchensee» («Güttinger See») unter Berücksichtigung einiger weiterer biotischer und abiotischer Parameter. 223 pp. Diplomarbeit Univ. Konstanz.

  • Biebl, H. and N. Pfennig, 1979. Anaerobic CO2 uptake by phototrophic bacteria. A review. Arch. Hydrobiol. Beih. Ergebn. Limnol. 12: 48–58.

    Google Scholar 

  • Bricaud, A., A. Morel and L. Prieur, 1983. Optical efficiency factors of some phytoplankters. Limnol. Oceanogr. 28: 816–832.

    Google Scholar 

  • Brunskill, G. J., 1969. Fayetteville Green Lake, New York. II. Precipitation and sedimentation of calcite in a meromictic lake with laminated sediments. Limnol. Oceanogr. 14: 830–847.

    Google Scholar 

  • Caldwell, D. E. and J. M. Tiedje, 1975. The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can. J. Microbiol. 21: 377–385.

    Google Scholar 

  • Caraco, N. and A. H. Puccoon, 1986. The measurement of bacterial chlorophyll and algal chlorophyll a in natural waters. Limnol. Oceanogr. 31: 889–893.

    Google Scholar 

  • Cloern, J. E., B. E. Cole and R. S. Oremland, 1983. Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnol. Oceanogr. 28: 1049–1061.

    Google Scholar 

  • Coon, T. G., M. Lopez, P. J. Richerson, T. M. Powell and C. R. Goldman, 1987. Summer dynamics of the deep chlorophyll maximum in Lake Tahoe. J. Plankton Res. 9: 327–344.

    Google Scholar 

  • Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, 1982. 3. Auflage, Verlag Chemie Weinheim.

  • Dubinina, G. A. and V. M. Gorlenko, 1975. New filamentous photosynthetic green bacteria containing gas vacuoles. Mikrobiologiya 44: 511–517.

    Google Scholar 

  • Dubinsky, Z. and T. Berman, 1979. Seasonal changes in the spectral composition of downwelling irradiance in Lake Kinneret (Israel). Limnol. Oceanogr. 24: 652–663.

    Google Scholar 

  • Dubinsky, Z. and T. Berman, 1981. Light utilization by phytoplankton in Lake Kinneret (Israel). Limnol. Oceanogr. 26: 660–670.

    Google Scholar 

  • Eichler, B. and N. Pfennig, 1988. A new purple sulfur bacterium from stratified freshwater lakes,Amoebobacter purpureus. Arch. Microbiol. 149: 395–400.

    Google Scholar 

  • Einsle, U., 1966. Die Buchenseen bei Radolfzell (Bodensee) und ihr Zooplankton. Mitt. bad. Landesver. Naturkunde u. Naturschutz 9: 27–63.

    Google Scholar 

  • Einsle, U., 1969. Populationsdynamische und synökologische Studien am Crustaceen-Plankton zweier Kleinseen. Beitr. naturk. Forsch. Südw.-Dtl. 28: 53–73.

    Google Scholar 

  • Fåafeng, B., 1976. En limnologisk undersœkelse av innsjœen Pollen i Ås kommune med hovedvekt på innsjœhistorie og primærprcduksjon. Universitetet i Oslo.

  • Fee, E. J., R. E. Hecky and H. A. Welch, 1987. Phytoplankton photosynthesis parameters in central Canadian lakes. J. Plankton Res. 9: 305–316.

    Google Scholar 

  • Fitz, R., 1987. Die Sukzession des Phytoplanktons im mittleren Buchensee und ihre Beziehung zu relevanten Umweltfaktoren. Diplomarbeit Univ. Konstanz.

  • Foy, R. H., 1987. A comparison of chlorophyll a and carotenoid concentrations as indicators of algal volume. Freshw. Biol. 17: 237–250.

    Google Scholar 

  • French, C. S. and V. K. Young, 1952. The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll. J. Gen. Physiol. 35: 873–890.

    Google Scholar 

  • Gemerden, H. v., 1980. Survival of Chromatium vinosum at low light intensities. Arch. Microbiol. 125: 115–121.

    Google Scholar 

  • Holler, S., 1987. Untersuchungen zur heterotrophen bakteriellen Produktion des mittleren Buchensee. Diplomarbeit Univ. Freiburg.

  • Kuenen J. G., L. A. Robertson and H. v. Gemerden, 1985. Microbial interactions among aerobic and anaerobic sulfur-oxidizing bacteria. In: K. C. Marshall (ed.), Advances in Mirobial Ecology, Plenum Press, New York, London: Vol 8, pp. 1–59.

    Google Scholar 

  • Lorenzen, C. J., 1965. A note on the chlorophyll and phaeophytin content of the chlorophyll maximum. Limnol. Oceanogr. 10: 482–483.

    Google Scholar 

  • Meffert, M.-E. and J. Overbeck, 1985. Dynamics of chlorophyll and photosynthesis in natural phytoplankton associations. II. Primary productivity, quantum yields and photosynthetic rates in small northgerman lakes. Arch. Hydrobiol. 104: 363–385.

    Google Scholar 

  • Megard, R. O., W. S. Combs jr., P. D. Smith and A. S. Knoll, 1979. Attenuation of light and daily integral rates of photosynthesis attained by planktonic algae. Limnol. Oceanogr. 24: 1038–1050.

    Google Scholar 

  • Moll, R. A. and E. F. Stoermer, 1982. A hypothesis relating trophic status and subsurface chlorophyll maxima of lakes. Arch. Hydrobiol. 94: 425–440.

    Google Scholar 

  • Nusch, E. A., 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14: 14–36.

    Google Scholar 

  • Odum, E. P., 1983. Grundlagen der Ökologie (Deutsche Übersetzung) (part I + II), Thieme, 836 pp.

  • Overmann, J., 1987. Untersuchungen zu den Produktionsverhältnissen photoautotropher Organismen im Mittleren Buchensee. Diplomarbeit Univ. Freiburg.

  • Overmann, J. and N. Pfennig, 1989.Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch Microbiol 152: 401–406.

    Google Scholar 

  • Parker, R. D., J. R. Lawrence and U. T. Hammer, 1983. A comparison of phototrophic bacteria in two adjacent saline meromictic lakes. Hydrobiologia 105: 53–61.

    Google Scholar 

  • Parkin, T. B. and T. D. Brock, 1980. Photosynthetic bacterial production in lakes: The effects of light intensity. Limnol. Oceanogr. 25: 711–718.

    Google Scholar 

  • Parkin, T. B. and T. D. Brock, 1981. Photosynthetic bacterial production and carbon mineralisation in a meromictic lake. Arch. Hydrobiol. 91: 366–382.

    Google Scholar 

  • Perry, M. J., M. C. Talbot and R. S. Alberte, 1981. Photoadaptation in marine phytoplankton: response of the photosynthetic unit. Mar. Biol. 62: 91–101.

    Google Scholar 

  • Rebsdorf, A., 1972. The carbon dioxide system in freshwater. A set of tables for easy computation of total carbon dioxide and other components of the carbon dioxide system. Freshwater Biological Laboratory, Hillerod, Denmark.

    Google Scholar 

  • Schanz, 1985. Vertical light attenuation and phytoplankton development in Lake Zurich. Limnol. Oceanogr. 30: 299–310.

    Google Scholar 

  • Smith, R. C. and K. S. Baker, 1978. Optical classification of natural waters. Limnol. Oceanogr. 23: 260–267.

    Google Scholar 

  • Stanier, R. Y. and J. H. C. Smith, 1960. The chlorophylls of green bacteria. Biochim. Biophys. Acta 41: 478–484.

    Google Scholar 

  • Steemann-Nielsen, E., 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Int. Expl. Mer 18: 117–140.

    Google Scholar 

  • Steenbergen, C. L. M. and H. J. Korthals, 1982. Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (the Netherlands). Pigment analysis and role in primary production. Limnol. Oceanogr. 27: 883–895.

    Google Scholar 

  • Takahashi, M. and S. Ichimura, 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol. Oceanogr. 13: 644–655.

    Google Scholar 

  • Talling, J. F., 1966. Photosynthetic behaviour in stratified and unstratified lake populations of a planktonic diatom. J. Ecol. 54: 99–127.

    Google Scholar 

  • Talling, J. F., 1971. The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Mitt. Int. Ver. Limnol. 19: 214–243.

    Google Scholar 

  • Talling. J. F., 1979. Factor interactions and implications for the prediction of lake metabolism. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13: 96–109.

    Google Scholar 

  • Tilzer, M. M., 1983. The importance of fractional light absorption by photosynthetic pigments for phytoplankton productivity in Lake Constance. Limnol. Oceanogr. 28: 833–846.

    Google Scholar 

  • Tilzer, M. M., 1988. Secchi disk-chlorophyll relationship in a lake with highly variable phytoplankton biomass. Hydrobiologia 162: 163–171.

    Google Scholar 

  • Tilzer, M. M. and B. Beese, 1988. The seasonal productivity cycle of phytoplankton and controlling factors in Lake Constance. Schweiz. Z. Hydrol. 50: 1–39.

    Google Scholar 

  • Tilzer, M. M., C. R. Goldman and E. de Amezaga, 1975. The efficiency of phytosynthetic light energy utilization by lake phytoplankton. Verh. Int. Verein. Limnol. 19: 800–807.

    Google Scholar 

  • Tilzer, M. M. and C. R. Goldman, 1978. Importance of mixing, thermal stratification and light adaptation for phytoplankton productivity in Lake Tahoe (California-Nevada). Ecology 59: 810–821.

    Google Scholar 

  • Walsby, A. E. and A. R. Klemer, 1974. The role of gas vacuoles in the microstratification of a population ofOscillatoria agardhii var.isothrix in Deming Lake, Minnesota. Arch. Hydrobiol. 74: 375–392.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology, 2nd ed., Saunders, 767 pp.

  • Williams, R. B. and M. B. Murdoch, 1966. Phytoplankton production and chlorophyll concentration in the Beaufort channel, North Carolina. Limnol. Oceanogr. 11: 73–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Overmann, J., Tilzer, M.M. Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake. Mittlerer Buchensee, West-Germany. Aquatic Science 51, 261–278 (1989). https://doi.org/10.1007/BF00877171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877171

Key words

Navigation