Skip to main content
Log in

An assessment of field evidence for ‘Byerlee’ friction

  • Faulting and Crustal Deformation: Field Observations and Modeling
  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Structural analyses of the angles of frictional ‘lock-up’ for fault sets that have become progressively misoriented, together with field observations from seismology, geomorphology, and borehole stress measurements, suggest that Byerlee friction coefficients (0.6<μ<0.85) are widely applicable to natural sliding surfaces with displacements of up to a few kilometres in the upper crust, from the surface of the earth to seismogenic depths. Extensional normal faults operating under presumed vertical trajectories of extreme compressive stress provide some of the best evidence for frictional lock-up followed by the initiation of new favorably oriented faults, but similar lock-up phenomena also occur in thrust and strike-slip fault systems.

However, extensional detachments which appear to have formed and remained active at very low dips (<15°) lie well outside the dip range of currently active normal faults, requiring stress trajectories that deviate significantly from the vertical and horizontal during their initiation and perhaps also during their continued reactivation. Other conspicuous exceptions to the pattern of frictional lock-up expected from Byerlee friction are major transform structures, such as the San Andreas fault in California, which remain active though oriented at high angles to the maximum principal compression. On the basis of the evidence afforded by the lower displacement faults, the apparent weakness of such structures seems most likely to arise from locally elevated fluid pressure, rather than from the presence of anomalously low-friction material within the fault zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, E. M. (1905),The Dynamics of Faulting, Trans. Edin. Geol. Soc.,8, 387–402.

    Google Scholar 

  • Anderson, E. M.,The Dynamics of Faulting and Dyke Formation with Application to Britain, 2nd edn. (Oliver and Boyd, Edinburgh 1951) 206 pp.

    Google Scholar 

  • Angevine, C. L., Turcotte, D. L., andFurnish, M. D. (1982),Pressure Solution Lithification as a Mechanism for the Stick-slip Behavior of Faults, Tectonics1, 151–160.

    Google Scholar 

  • Axen, G. J. (1992),Pore Pressure Stress Increase, and Fault Weakening in Low-angle Normal Faulting, J. Geophys. Res.97, 8979–8991.

    Google Scholar 

  • Batzle, M. L., andSimmons G. (1977),Geothermal Systems: Rocks, Fluids, Fractures. American Geophysical Union Monograph20, 233–242.

    Google Scholar 

  • Boyer, S. E.,Geometric evidence for synchronous thrusting in the southern Alberta and northwest Montana thrust belts. InThrust Tectonics (ed. McClay, K. R.) (Chapman & Hall, London 1992) pp. 377–390.

    Google Scholar 

  • Boyer, S. E., andElliot, D. (1982),Thrust Systems, Am. Assoc. Petrol. Geol. Bull.66, 1196–1230.

    Google Scholar 

  • Bruhn, R., Yusas, M. R., andHuertas, F. (1982),Mechanics of Low-angle Normal Faulting: An Example from Roosevelt Hot Springs Geothermal Area, Utah, Tectonophys.86, 343–361.

    Google Scholar 

  • Butler, R. W. H. (1983),Balanced Cross-sections and their Implications for the Deep Structure of the Northwest Alps, J. Struct. Geol.5 125–137.

    Google Scholar 

  • Byerlee, J. D. (1978),Friction of Rocks, Pure Appl. Geophys.116, 615–626.

    Google Scholar 

  • Byerlee, J. D. (1990),Friction, Overpressure, and Fault-normal Compression, Geophys. Res. Lett.17, 2109–2112.

    Google Scholar 

  • Byerlee, J. D. (1993),Model for Episodic Flow of High-pressure Water in Fault Zones before Earthquakes, Geology21, 303–306.

    Google Scholar 

  • Carson, M. A. (1977),Angles of Repose, Angles of Shearing Resistance, and Angles of Talus Slopes, Earth Surface Processes2, 363–380.

    Google Scholar 

  • Carson, M. A., andKirkby, M. J.,Hillslope Form and Processes (Cambridge University Press, Cambridge 1972) 475 pp.

    Google Scholar 

  • Chen, W.-P., andMolnar, P. (1983),Focal Depths of Intracontinental and Intraplate Earthquakes and their Implications for the Thermal and Mechanical Properties of the Lithosphere, J. Geophys. Res.88, 4183–4214.

    Google Scholar 

  • Dieterich, J. H. (1972),Time-dependent Friction in Rocks, J. Geophys. Res.,77, 3690–3697.

    Google Scholar 

  • Dieterich, J. H. (1979),Modelling of Rock Friction: 1. Experimental Results and Constitutive Equations, J. Geophys. Res.84, 2161–2168.

    Google Scholar 

  • Doser, D. I., andSmith, R. B. (1989),An Assessment of Source Parameters of Earthquakes in the Cordillera of the Western United States. Bull. Seismol. Soc. Am.79, 1383–1409.

    Google Scholar 

  • Elliot, D. (1976),The Energy Balance and Deformation Mechanisms of Thrust Sheets, Phil. Trans. R. Soc. Lond.A 283, 289–312.

    Google Scholar 

  • Fournier, R. O. (1991),The Transition from Hydrostatic to Greater than Hydrostatic Fluid Pressure in Presently Active Continental Hydrothermal Systems in Crystalline Rock, Geophys. Res. Lett.18, 955–958.

    Google Scholar 

  • Hill, D. P. (1993),A Note on Ambient Pore Pressure, Fault-confined Pore Pressure, and Apparent Friction, Bull. Seismol. Soc. Am.83, 583–586.

    Google Scholar 

  • Jackson, J. A. (1987),Active Normal Faulting and Crustal Extension, Geol. Soc. Lond. Spec. Publ.28, 3–17.

    Google Scholar 

  • Jaeger, J. C., andCook, N. G. W.,Fundamentals of Rock Mechanics (Chapman and Hall, London 1979) 591 pp.

    Google Scholar 

  • Jamison, D. B., andCook, N. G. W. (1980),Note on Measured Values for the State of Stress in the Earth's Crust, J. Geophys. Res.85, 1833–1838.

    Google Scholar 

  • John, B. E. (1987),Geometry and Evolution of a Mid-crustal Extensional Fault System: Chemehuevi Mountains, Southeastern California, Geol. Soc. Lond. Spec. Publ.28, 313–335.

    Google Scholar 

  • Koons, D. (1955),Cliff Retreat in the Southwest United States, Am. J. Sci.253, 44–52.

    Google Scholar 

  • McCaig, A. M., andMcClelland, E.,Paleomagnetic techniques applied to thrust belts. InThrust Tectonics (ed. McClay, K. R.) (Chapman & Hall, London 1992), pp. 209–216.

    Google Scholar 

  • McClay, K. R., Insley, M. W., andAnderton, R. (1990),Inversion of the Kechika Trough, Northeastern British Columbia, Canada, Geol. Soc. Lond. Spec. Publ.44, 235–257.

    Google Scholar 

  • Miller, E. L., Gans, P. B., andGaring, J. (1983),The Snake Range Decollement: An Exhumed Mid-Tertiary Ductile-brittle Transition, Tectonics2, 239–263.

    Google Scholar 

  • Miller, M. G. (1991),High-angle Origin of the Currently Low-angle Badwater Turtleback Fault, Death Valley, California, Geology19, 372–375.

    Google Scholar 

  • Morley, C. K. (1990),Basin Inversion in the Osen-Røa Thrust Sheet, Southern Norway, Geol. Soc. Lond. Spec. Publ.44, 259–273.

    Google Scholar 

  • Morrow, C., Radney, B., andByerlee, J.,Frictional strength and the effective pressure law of montmorillonite and illite clays. InEarthquake Mechanics and Transport Properties of Rocks (eds. Evans, B. and Wong, T. F.) (Academic Press, London 1992) pp. 69–88.

    Google Scholar 

  • Mount, V. S. andSuppe, J. (1987),State of Stress near the San Andreas Fault: Implications for Wrench Tectonics, Geology15, 1143–1146.

    Google Scholar 

  • Mount, V. S., andSuppe, J. (1992),Present-day Stress Orientations Adjacent to Active Strike-slip Faults: California and Sumatra, J. Geophys. Res.97, 11,995–12,013.

    Google Scholar 

  • Nur, A., Ron, H., andScotti, O. (1986),Fault Mechanics and the Kinematics of Block Rotations, Geology14, 746–749.

    Google Scholar 

  • Nur, A., Ron, H., andScotti, O. (1989),Kinematics and Mechanics of Tectonic Block Rotations, Am. Geophys. Union Geophys. Mon.49, 31–46.

    Google Scholar 

  • Nur, A., Ron, H., andBeroza, G. (1993),Landers-Mojave Earthquake Line: A New Fault System, GSA Today3, 253, 256–258.

    Google Scholar 

  • Parsons, T., andThompson, G. (1993),Does Magmatism Influence Low-angle Normal Faulting, Geology21, 247–250.

    Google Scholar 

  • Price, N. J., andCosgrove, J. W.,Analysis of Geological Structures (Cambridge University Press, Cambridge 1990), 502 pp.

    Google Scholar 

  • Proffett, J. M. (1977),Cenozoic Geology of the Yerington District, Nevada, and Implications for the Nature and Origin of Basin and Range Faulting, Bull. Geol. Soc. Am.88, 247–266.

    Google Scholar 

  • Rice, J. R.,Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault. InEarthquake Mechanics and Transport Properties of Rocks (eds. Evans, B., and Wong, T. F.) (Academic Press, London 1992) pp. 475–503.

    Google Scholar 

  • Roberts, S., andJackson, J. (1991),Active Normal Faulting in Central Greece: An Overview, Geol. Soc. Lond. Spec. Publ.56, 125–142.

    Google Scholar 

  • Scott, R. J., andLister, G. S. (1992),Detachment Faults: Evidence for a Low-angle Origin, Geology20, 833–836.

    Google Scholar 

  • Sibson, R. H. (1974),Frictional Constraints on Thrust, Wrench, and Normal Faults, Nature,249, 542–544.

    Google Scholar 

  • Sibson, R. H. (1983),Continental Fault Structure and the Shallow Earthquake Source, J. Geol. Soc. Lond.140, 741–767.

    Google Scholar 

  • Sibson, R. H. (1985),A Note on Fault Reactivation, J. Struct. Geol.7, 751–754.

    Google Scholar 

  • Sibson, R. H. (1990),Rupture Nucleation on Unfavorably Oriented Faults, Bull. Seismol. Soc. Am80, 1580–1604.

    Google Scholar 

  • Sleep, N. H., andBlanpied, M. L. (1992),Creep, Compaction, and the Weak Rheology of Major Faults, Nature,359, 687–692.

    Google Scholar 

  • Stesky, R., Brace, W., Riley, D., andRobin, P-Y. (1974),Friction in Faulted Rock at High Temperature and Pressure, Tectonophys.23, 177–203.

    Google Scholar 

  • Tanner, P. W. G., The duplex model: implications from a study of flexural slip duplexes In:Thrust Tectonics (ed. McClay, K. R.) (Chapman and Hall London 1992) pp. 201–208.

    Google Scholar 

  • Wilcox, W. S. D., Purdy, G. M., andSolomon, S. C. (1992),Microearthquake Evidence for Extension Across the Kane Transform Fault, J. Geophys. Res.95 15,439–15,462.

    Google Scholar 

  • Zoback, M. D., Apel, R., Baumgartner, J., Brudy, M., Emmerman, R., Engeser, B., Fuchs, K., Kessels, W., Rischmuller, H., Rummel, F. andVernik, L. (1993),Upper Crustal Strength Inferred from Stress Measurements to 6 km Depth in the KTB Borehole Nature365, 633–635.

    Google Scholar 

  • Zoback, M. D., andHealy, J. H. (1984),Friction, Faulting, and in situ Stress, Ann. Geophys.2, 689–698.

    Google Scholar 

  • Zoback, M. D., andHealy, J. H. (1992),In situ Stress Measurements to 3.5 km Depth in the Cajon Pass Scientific Research Borehole: Implications for the Mechanics of Faulting, J. Geophys. Res.97, 5039–5057.

    Google Scholar 

  • Zoback, M. D., Zoback, M. L., Mount, V. S., Suppe, J., Eaton, J. P., Healy, J. H., Oppenheimer, D., Reasenberg, P., Jones, L., Raleigh, C. B., Wong, I. G., Scotti, O., andWentworth, C. (1987),New Evidence on the State of Stress of the San Andreas Fault System, Science238, 1105–1111.

    Google Scholar 

  • Zoback, M. L. (1989),State of Stress and Modern Deformation of the Northern Basin and Range Province, J. Geophys. Res.94, 7105–7128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibson, R.H. An assessment of field evidence for ‘Byerlee’ friction. PAGEOPH 142, 645–662 (1994). https://doi.org/10.1007/BF00876058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876058

Key words

Navigation