Skip to main content
Log in

Brecciation processes in fault zones: Inferences from earthquake rupturing

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Surface-rupture patterns and aftershock distributions accompanying moderate to large shallow earthquakes reveal a residual brittle infrastructure for established crustal fault zones, the complexity of which is likely to be largely scale-invariant. In relation to such an infrastructure, continued displacement along a particular master fault may involve three dominant mechanical processes of rock brecciation: (a)attrition brecciation, from progressive frictional wear along principal slip surfaces during both seismic and aseismic sliding, (b)distributed crush brecciation, involving microfracturing over broad regions when slip on the principal slip surfaces is impeded by antidilational jogs or other obstructions, and (c)implosion brecciation, associated with the sudden creation of void space and fluid-pressure differentials at dilational fault jogs during earthquake rupture propagation. These last, high-dilation breccias are particularly favorable sites for hydrothermal mineral deposition, forming transitory low-pressure channels for the rapid passage of hydrothermal fluids. Long-lived fault zones often contain an intermingling of breccias derived from all three processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aydin, A. andJohnson, A. M. (1978),Development of faults as zones of deformation bands and as slip surfaces in sandstone. Pure Appl. Geophys.116, 931–942.

    Google Scholar 

  • Booker, J. (1974),Time-dependent strain following faulting of a porous medium. J. Geophys. Res.79, 2037–2043.

    Google Scholar 

  • Bouchon, M. (1982),The rupture mechanism of the Coyote Lake earthquake of 6 August 1979 inferred from near-field data. Bull. Seism. Soc. Am.72, 745–757.

    Google Scholar 

  • Brock, W. G. andEngelder, J. T. (1977),Deformation associated with the movement of the Muddy Mountain overthrust in the Buffington window, southeastern Nevada. Geol. Soc. Am. Bull.88, 1667–1677.

    Google Scholar 

  • Burdick, L. J. andMellman, G. R. (1976),Inversion of body waves from Borrego Mountain earthquake to the source mechanism. Bull. Seism. Soc. Am.66, 1485–1499.

    Google Scholar 

  • Byerlee, J., Mjachkin, V., Summers, R. andVoevoda, O. (1978),Structures developed in fault gouge during stable sliding and stick-slip. Tectonophys.44, 161–171.

    Google Scholar 

  • Chester, F. M., Friedman, M., andLogan, J. M. (1985),Foliated cataclasite. Tectonophys.111, 134–146.

    Google Scholar 

  • Clark, M. M. (1972),Surface rupture along the Coyote Creek fault. U.S. Geol. Surv. Prof. Paper787, 55–86.

    Google Scholar 

  • Crowell, J. C. (1974),Origin of Late Cenozoic basins in southern California. Soc. Econ. Pal. Mineral. Spec. Publ.22, 190–203.

    Google Scholar 

  • Das, S. andScholz, C. H. (1981),Off-fault aftershock clusters caused by shear stress increase. Bull. Seism. Soc. Am.71, 1669–1675.

    Google Scholar 

  • Davis, G. A., Anderson, J. L., Frost, E. G. andShackelford, T. J. (1980),Mylonitization and detachment faulting in the Whipple-Buckskin-Rawhide Mountains terrane, southeastern California and western Arizona. Geol. Soc. Am. Mem.153, 79–129.

    Google Scholar 

  • Eaton, J. P., O'Neill, M. E., andMurdock, J. N. (1970),Aftershocks of the 1966 Parkfield-Chola California, earthquake: A detailed study. Bull. Seism. Soc. Am.60, 1151–1197.

    Google Scholar 

  • Ebel, J. E. andHelmberger, D. V. (1982),P-wave complexity and fault asperities: The Borrego Mountain, California, earthquake of 1968. Bull. Seism. Soc. Am.72, 413–437.

    Google Scholar 

  • Engelder, J. T. (1974),Cataclasis and the generation of fault gouge. Geol. Soc. Am. Bull.85, 1515–1522.

    Google Scholar 

  • Engelder, J. T. (1978),Aspects of asperity-surface interaction and surface damage of rocks during experimental frictional sliding. Pure Appl. Geophys.116, 705–716.

    Google Scholar 

  • Engelder, J. T., Logan, J. M., andHandin, J. (1975),The sliding characteristics of sandstone on quartz fault-gouge. Pure Appl. Geophys.113, 69–86.

    Google Scholar 

  • Etheridge, M. (1983),Differential stress magnitudes during regional deformation and metamorphism: Upper bound imposed by tensile fracturing. Geology11, 231–234.

    Google Scholar 

  • Flinn, D. (1977),Transcurrent faults and associated cataclasis in Shetland. J. Geol. Soc. Lond.133, 231–248.

    Google Scholar 

  • Gamond, J. F. (1983),Displacement features associated with fault zones: A comparison between observed examples and experimental models. J. Struct. Geol.5, 33–46.

    Google Scholar 

  • Gay, N. C. andOrtlepp, W. D. (1979),Anatomy of a mining-induced fault zone. Geol. Soc. Am. Bull.90, 47–58.

    Google Scholar 

  • Grocott, J. (1981),Fracture geometry of pseudotachylyte generation zones: A study of shear fractures formed during seismic events. J. Struct. Geol.3, 169–178.

    Google Scholar 

  • Hamilton, R. M. (1972),Aftershocks of the Borrego Mountain earthquake from April 12 to June 12, 1968. U.S. Geol. Surv. Prof. Paper787, 31–54.

    Google Scholar 

  • Hill, D. P. (1977),A model for earthquake swarms. J. Geophys. Res.82, 1347–1352.

    Google Scholar 

  • House, W. M. andGray, D. R. (1982),Cataclasites along the Saltville thrust, U.S.A., and their implications for thrust-sheet emplacement. j. Struct. Geol.4, 257–269.

    Google Scholar 

  • Hulin, C. D. (1929),Structural control of ore deposition. Econ. Geol.24, 15–49.

    Google Scholar 

  • Jackson, R. E. andDunn, D. E. (1974),Experimental sliding friction and cataclasis of foliated rocks. Int. J. Rock Mech. Min. Sci.14, 235–249.

    Google Scholar 

  • King, G. C. P. (1983),The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: The geometrical origin of b-value. Pure Appl. Geophys.121, 762–815.

    Google Scholar 

  • Liu, H.-L. andHelmberger, D. V. (1983),The near-source ground motion of the 6 August 1979 Coyote Lake, California, earthquake. Bull. Seism. Soc. Am.73, 201–218.

    Google Scholar 

  • Masson, H. (1972),Sur l'origine de la cornieule par fracturation hydraulique. Eclogae geol. Helv.65, 27–41.

    Google Scholar 

  • McKibben, M. A. andElders, W. A. (1985),Fe−Zn−Cu−Pb mineralization in the Salton Sea geothermal system, Imperial Valley, California. Econ. Geol.80, 539–559.

    Google Scholar 

  • McKinstry, H. E.,Mining Geology. Prentice-Hall, New Jersey, 1948, 677 pp.

    Google Scholar 

  • Mitcham, T. W. (1974),Origin of breccia pipes. Econ. Geol.69, 412–413.

    Google Scholar 

  • Moore, H. E. andSibson, R. H. (1978),Experimental thermal fragmentation in relation to seismic faulting. Tectonophys.49, T9–T17.

    Google Scholar 

  • Muraoka, H. andKamata, H. (1983),Displacement distributions along minor fault traces. J. Struct. Geol.5, 483–495.

    Google Scholar 

  • Newhouse, W. H.,Ore Deposits as Related to Structural Features. Princeton Univ. Press, New Jersey, 1942, 280 pp.

    Google Scholar 

  • Nur, A., andBooker, J. (1972),Aftershocks caused by pore fluid flow?. Science175, 885–887.

    Google Scholar 

  • Paterson, M. S.,Experimental Rock Deformation — The Brittle Field. Springer-Verlag, Berlin, 1978, 254 pp.

    Google Scholar 

  • Phillips, W. J. (1972),Hydraulic fracturing and mineralization. J. Geol. Soc. Lond.128, 337–359.

    Google Scholar 

  • Reasenberg, P. andEllsworth, W. L. (1982),Aftershocks of the Coyote Lake, California, earthquake of August 6, 1979: A detailed study. J. Geophys. Res.87, 10, 637–10, 665.

    Google Scholar 

  • Redwine, L (1981),Hypothesis containing dilation, natural hydraulic fracturing and dolomitisation to explain petroleum reservoirs in Monterey Shale, Santa Maria area, California, inThe Monterey Formation and Related Siliceous Rocks of California. R. E. Garrison, R. G. Douglas, K. E. Pisciotto, C. M. Isaacs and J. C. Ingle (eds.), Spec. Publ. Soc. Econ. Pal. Mineral., Los Angeles, p. 221–248.

  • Robertson, E. C. (1982),Continuous formation of gouge and breccia during fault displacement, inIssues in Rock Mechanics. Proc. 23rd Symp. Rock Mechanics, R. E. Goodman and F. E. Heuse (eds.), Am. Inst. Mining Metall. Petrol. Eng., New York, 397–403.

    Google Scholar 

  • Roehl, P. O. (1981), ‘Dilation brecciation —A proposed mechanism of fracturing, petroleum expulsion and dolomitization in the Monterey Formation, California’, inThe Monterey Formation and Related Siliceous Rocks of California. R. E. Garrison, R. G. Douglas, K. E. Pisciotto, C. M. Isaaca, and J. C. Ingle (eds.), Spec. Publ. Soc. Econ. Pal. Mineral., Los Angeles, p. 285–315.

  • Segall, P. andPollard, D. D. (1980),Mechanics of discontinuous faulting. J. Geophys. Res.85, 4337–4350.

    Google Scholar 

  • Segall, P. andPollard, D. D. (1983),Nucleation and growth of strike-slip faults in granite. J. Geophys. Res.88, 555–568.

    Google Scholar 

  • Sharp, W. E. (1965),The deposition of hydrothermal quartz and calcite. Econ. Geol.60, 1635–1644.

    Google Scholar 

  • Sibson, R. H. (1975),Generation of pseudotachylyte by ancient seismic faulting. Geophys. J. R. Astr. Soc.43, 775–794.

    Google Scholar 

  • Sibson, R. H. (1977),Fault rocks and fault mechanisms. J. Geol. Soc. Lond.133, 191–213.

    Google Scholar 

  • Sibson, R. H. (1983),Continental fault structure and the shallow earthquake source. J. Geol. Soc. Lond.140, 741–767.

    Google Scholar 

  • Sibson, R. H. (1985),Stopping of earthquake ruptures at dilational fault jogs. Nature316, 248–251.

    Google Scholar 

  • Sibson, R. H. (1986),Rupture interaction with fault jogs, inEarthquake Source Mechanics. S. Das, J. Boatwright and C. H. Scholz (eds.), Maurice Ewing Ser. 6, Am. Geophys. Union Mon. 37, 157–168.

  • Sieh, K. E. (1978),Slip along the San Andreas fault associated with the great 1857 earthquake. Bull. Seism. Soc. Am.68, 1421–1448.

    Google Scholar 

  • Spurr, J. E. (1925),The Camp Bird compound veindike. Econ. Geol.20, 115–152.

    Google Scholar 

  • Tchalenko, J. S. (1970),Similarities between shear zones of different magnitudes. Geol. Soc. Am. Bull.81, 1625–1640.

    Google Scholar 

  • Tchalenko, J. S. andBerberian, M. (1975),Dasht-e Bayaz Fault, Iran: Earthquake and earlier related structures in bed rock. Geol. Soc. Am. Bull.86, 703–709.

    Google Scholar 

  • Toulmin, P. andClark, S. P. (1979),Thermal aspects of ore formation, inGeochemistry of Hydrothermal Ore Deposits. H. L. Barnes (ed.), Holt, Rinehart, New York, 437–464.

    Google Scholar 

  • Vedder, J. G. andWallace, R. E. (1970),Map showing recently active fault breaks along the San Andreas and related faults between Cholame Valley and Tejon Pass, California. U.S. Geol. Surv. Misc. Invest. Map I-574, scale 1∶24,000.

  • Wilkins, J. andHeidrick, T. L. (1982),Base and precious metal mineralization related to low-angle tectonic features in the Whipple Mountains, California, and Buckskin Mountains, Arizona, inMesozoic-Cenozoic Tectonic Evolution of the Colorado River Region, California, Arizona and Nevada. E. G. Forst and D. L. Martin (eds.), Cordilleran Publishers, San Diego, p. 182–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibson, R.H. Brecciation processes in fault zones: Inferences from earthquake rupturing. PAGEOPH 124, 159–175 (1986). https://doi.org/10.1007/BF00875724

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00875724

Key words

Navigation