Skip to main content
Log in

Seismic measurements of the internal properties of fault zones

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

The internal properties within and adjacent to fault zones are reviewed, principally on the basis of laboratory, borehole, and seismic refraction and reflection data. The deformation of rocks by faulting ranges from intragrain microcracking to severe alteration. Saturated microcracked and mildly fractured rocks do not exhibit a significant reduction in velocity, but, from borehole measurements, densely fractured rocks do show significantly reduced velocities, the amount of reduction generally proportional to the fracture density. Highly fractured rock and thick fault gouge along the creeping portion of the San Andreas fault are evidenced by a pronounced seismic low-velocity zone (LVZ), which is either very thin or absent along locked portions of the fault. Thus there is a correlation between fault slip behavior and seismic velocity structure within the fault zone; high pore pressure within the pronounced LVZ may be conductive to fault creep. Deep seismic reflection data indicate that crustal faults sometimes extend through the entire crust. Models of these data and geologic evidence are consistent with a composition of deep faults consisting of highly foliated, seismically anisotropic mylonites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki, K, andLee W. H. K. (1976),Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogenous initial model. J. Geophys. Res.81, 4381–4399.

    Google Scholar 

  • Allen, C. R. (1968), ‘The tectonic environments of seismically active and inactive areas along the San Andreas fault system’, in Proc. Conf. Geol. Problems San Andreas Fault System, W. R. Dickinson and A. Grantz (eds.). Stanford Univ. Publ. Geol. Sci.11, 70–80.

  • Allen, C. R. (1981), ‘The modern San Andreas fault’, inThe Geotectonic Development of California, W. G. Ernst (ed.), Prentice-Hall, Engelwood Cliffs, New Jersey, p. 512–534.

    Google Scholar 

  • Bamford, D. andNunn, K. R. (1979),In situ measurement of crack anisotropy in the Carboniferous limestone in northwest England. Geophys. Prosp.27, 322–338.

    Google Scholar 

  • Birch, F. (1960),The velocity of compressional waves in rocks to 10 kilobars: Pt. 1. J. Geophys. Res.65, 1083–1102.

    Google Scholar 

  • Birch, F. (1961),The velocity of compressional waves in rocks to 10 kilobars: Pt. 2. J. Geophys. Res.66, 2199–2224.

    Google Scholar 

  • Blümling, P., Mooney, W. D., andLee, W. H. K. (1985),Crustal structure of the southern Calaveras fault zone, central California, from seismic refraction investigations, Bull. Seis. Soc. Am. 75, 193–209.

    Google Scholar 

  • Boken, A. andMooney, W. D. (1982)A refraction study of the Santa Cruz Mountains, west-central California (abstr.). Trans. Am. Geophys. Union, EOS63, 1036.

    Google Scholar 

  • Brewer, J. A., Matthews, D. M., Warner, M. R., Hall, J., Smythe andWittington, R. J. (1983) BIRPS deep seismic reflection studies of the British Caledonides. Nature305, 206–210.

    Google Scholar 

  • Christensen N. I. (1966),Elasticity of ultramafic rocks. J. Geophys. Res.71, 5921–5931.

    Google Scholar 

  • Christensen, N. I. (1978),Ophiolites, seismic velocities and oceanic crustal structure. Tectonophys.47, 131–157.

    Google Scholar 

  • Christensen, N. I. (1984)Pore pressure and oceanic crustal seismic structure. Geophy. J. Roy. Astr. Soc.79, 411–424.

    Google Scholar 

  • Christensen, N. I. andWang, H. F. (1985)The influence of pore pressure and confining pressure on dynamic elastic properties of Berea sandstone. Geophysics50, 207–213.

    Google Scholar 

  • Cormier, V. F. andSpudich, P. (1984)Amplification of ground motion and waveform complexity in fault zones: Examples from the San Andreas and Calaveras Faults. Geophys. J. Roy. Astr. Soc.79, 135–152.

    Google Scholar 

  • Crampin, S. (1978),Seismic wave propagation through a cracked solid: Polarization as a possible dilatancy diagnostic. Geophys. J. Roy. Astr. Soc.53, 467–496.

    Google Scholar 

  • Crampin, S. (1984a),An introduction to wave propagation in anisotropic media. Geophys. J. Roy. Astr. Soc.76, 17–28.

    Google Scholar 

  • Crampin, S. (1984b),Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys. J. Roy. Astr. Soc.76, 135–145.

    Google Scholar 

  • Crampin, S. McGonigle, R. andBamford, D. (1980),Estimating crack parameters from observation of P-wave velocity anisotropy. Geophysics45, 345–360.

    Google Scholar 

  • Dortman, N. B. andMagid, M. S. (1969),New data on velocities of elastic waves in crystalline rocks as a function of moisture. Int. Geol. Rev.11, 517–523.

    Google Scholar 

  • Feng, R. andMcEvilly, T. V. (1983),Interpretation of seismic reflection profiling data for the structure of the San Andreas fault zone. Bull. Seis. Soc. Am.73, 1701–1720.

    Google Scholar 

  • Fountain, D. M., Hurich, C. A. andSmithson, S. B. (1984),Seismic reflectivity of mylonite zones in the crust. Geology12, 195–198.

    Google Scholar 

  • Hall, N. T. (1984),Holocene history of the San Andreas fault between Crystal Springs Reservoir and San Andreas Dam, San Mateo County, California, Bull. Seis. Soc. Am.74, 281–299.

    Google Scholar 

  • Healy, J. H. andPeake, L. G. (1975),Seismic velocity structure along a section of the San andreas fault near Bear Valley, California. Bull. Seis. Soc. Am.65, 1177–1197.

    Google Scholar 

  • Hudson, J. A. (1981),Wave speeds and attenuation of elastic waves in material containing cracks. Geophys. J. Roy. Astr. Soc.64, 133–150.

    Google Scholar 

  • Hurich, C. A., Smithson, S. B., Fountain, D. M. andHumphreys, M. C. (1985),Seismic evidence of mylonite reflectivity and deep structure in the Kettle dome metamorphic core complex, Washington Geology.13, 577–580.

    Google Scholar 

  • Jones, T. D. andNur, A. (1984),The Nature of seismic reflection from deep crustal fault zones. J. Geophys. Res.89, 3153–3173.

    Google Scholar 

  • Leary, P. C. andHenyey, T. L. (1985),Anisotropy and fracture zones about a geothermal well from P-wave velocity profiles. Geophysics50, 25–36.

    Google Scholar 

  • Lynn, H. G. (1979),Migration and interpretation of deep crustal seismic reflection data Ph.D. Thesis, 158 pp. Stanford Univ., Stanford, Calif.

    Google Scholar 

  • Ludwig, W. J., Nafe, K. E. andDrake C. L., ‘Seismic refraction’, inThe Sea, Vol. 4, Pt. I, A. Maxwell (ed.) Wiley, New York, 1970, p. 53–84.

    Google Scholar 

  • Mayer-Rosa, D. (1973),Traveltime anomalies and distribution of earthquakes along the Calaveras fault zone. California. Bull. Seis. Soc. Am.63, 713–729.

    Google Scholar 

  • Mereu, R. F. (1986),An interpretation of the central California profiles for the CCSS Shizooka workshop, submitted to USGS Open-File Rep., 7 pp.

  • Mooney, W. D. andColburn, R. (1985),A seismic refraction profile across the San Andreas, Sargent, and Calaveras faults, west-central California. Bull. Seis. Soc. Am.75, 175–191.

    Google Scholar 

  • Mooney, W. D. andLuetgert, J. H. (1982),A seismic refraction study of the Santa Clara Valley and southern Santa Cruz Mountains, west-central California Bull. Seis. Soc. Am.72, 901–909.

    Google Scholar 

  • Moos, D. andZoback, M. D. (1983),In situ studies of velocity in fractured crystalline rocks. J. Geophys. Res.88, 2345–2358.

    Google Scholar 

  • Nur, A. andSimmons, G. (1968),The effect of saturation on velocity in low porosity rocks. Earth Planet. Sci. Lett.7, 183–193.

    Google Scholar 

  • O'Connell, R. J., andBudiansky B. (1974)Seismic velocities in dry and saturated cracked solids. J. Geophys. Res.79, 5412–5426.

    Google Scholar 

  • Pavoni, N. (1973), ‘A structural model for the San Andreas fault zone along the northeast side of the Gabilan Range’, inProc. Conf. Tectonic Problems San Andreas Fault System, R. L. Kovach and A. Nur (eds.) Stanford Univ. Publ. Geol. Sci.13, 259–267.

  • Peddy, C. P. (1984),Displacement of the Moho by the Outer Isles thrust shown by seismic modeling. Nature312, 628–630.

    Google Scholar 

  • Sibson R. H. (1977),Fault rocks and fault mechanism. J. Geol. Soc. Lond.133, 191–213.

    Google Scholar 

  • Simmons, G. andNur, A. (1968),Granites: Relation of properties in situ to laboratory measurements. Science162, 789–791.

    Google Scholar 

  • Sjogren, B. (1984),Shallow Refraction Seismics, Chapman and Hall, London, 268 pp.

    Google Scholar 

  • Smithson, S. B., Brewer, J. A., Kaufman, S., Oliver, J. E. andHurich, C. (1979),Structure of the Laramide Wind River uplift, Wyoming, from COCORP deep reflection data and from gravity data. J. Geophys. Res.84, 5955–5972.

    Google Scholar 

  • Stierman, D. J. (1984),Geophysical and geological evidence for fracturing, water circulation, and chemical alteration in granitic rocks adjacent to major strike-slip faults. J. Geophys. Res.89, 5849–5857.

    Google Scholar 

  • Stierman, D. J. andKovach, R. L. (1979),An in situ velocity study: The Stone Canyon well. J. Geophys. Res.84, 672–678.

    Google Scholar 

  • Thurber, C. H. (1983),Earthquake locations and three-dimensional crustal structure in the Coyote Lake Area, central California. J. Geophys. Res.88, 8226–8236.

    Google Scholar 

  • Trehu, A. M. andWheeler, W. H. (1986),Possible evidence for subducted sediments beneath central California. Geology (submitted).

  • Wallace, R. E. (1949),Structure of a portion of the San Andreas rift in southern California. Geol. Soc. Am. Bull.,60, 781–806.

    Google Scholar 

  • Wang, C. Y. (1984),On the constitution of the San Andreas fault zone in central California. J. Geophys. Res.,89, 5858–5866.

    Google Scholar 

  • Wang, C. Y., Lin, W. N. andWu, F. T. (1978),Constitution of the San Andreas Fault Zone at depth. Geophys. Res. Lett.5, 741–744.

    Google Scholar 

  • Wang, H. F. andSimmons, G. (1978),Microcracks in crystalline rock from 5.3 km depth in the Michigan Basin. J. Geophys. Res.83, 5849–5856.

    Google Scholar 

  • Wu, F. T. (1978),Mineralogy and physical nature of clay gouge. Pure Appl. Geophys.116, 655–689.

    Google Scholar 

  • Wu, F. T., Blatter, L. andRobertson, H. (1975),Clay gouges in the San Andreas fault system and their possible implications. Pure Appl. Geophys.113 87–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooney, W.D., Ginzburg, A. Seismic measurements of the internal properties of fault zones. PAGEOPH 124, 141–157 (1986). https://doi.org/10.1007/BF00875723

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00875723

Key words

Navigation