Skip to main content
Log in

Intraspecific metabolic diversity among strains ofBurkholderia cepacia isolated from decayed onions, soils, and the clinical environment

  • Research Articles
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A collection of 218 strains ofBurkholderia cepacia (including 18% strain replicates) was assembled from organic soils, decayed onions, and clinical sources. Each strain was characterized for virulence to onion, catabolic ability using the Biolog GN microtiter plate, and several other behaviors. Overall test reproducibility was estimated at 98%. The results obtained using the Biolog GN system corresponded well to those obtained using standard methods. Three coefficients of resemblance (Gower similarity, pattern difference, and Jaccard similarity) were calculated and clustered by the group-average method. The sorted matrices and phenograms, while giving evidence of an underlying phenetic structure to theB. cepacia nomenspecies, gave little evidence of sorting by broad source of isolation. Strains isolated from within fields or samples were frequently found to be similar, however, strains isolated from fields with similar cropping histories were not. The Gower-transformed centroids of ordained clusters were projected in a principal coordinate system and estimates of disjunction were calculated. Strains ofB. cepacia were shown to be non-uniformly distributed in taxonomic space. Strains isolated by serial dilution on onion slices formed a tight phenetic cluster which includes the type strain of the nomenspecies and that of a synonymous group (Pseudomonas multivorans); the strains in this phenon were generally virulent to onion and were partially differentiated from others by pectolytic behavior and by the production of diffusible pigment on King's medium A. Further characterization should better resolve the taxonomy of the nomenspecies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous (1993) Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 45. Int. J. Syst. Bacteriol. 43: 398–399

  • Ballard RW, Palleroni NJ, Doudoroff M, Stanier RY & Mandel M (1970) Taxonomy of the aerobic pseudomonads:Pseudomonas cepacia, P. marginata, P. alliicola, P. caryophylli. J. Gen. Microbiol. 60: 199–214

    Google Scholar 

  • Burkholder WH (1950) Sour skin, a bacterial rot of onion bulbs. Phytopathology 40: 115–117

    Google Scholar 

  • Eldredge N & Cracraft J (1980) Phylogenetic patterns and the evolutionary process: Method and theory in comparative biology. Columbia University Press, New York

    Google Scholar 

  • Esanu JG & Schubert RHW (1973) Zur Taxonomic und Nomenklatur vonPseudomonas cepacia. Zentrallblatt für Bakteriologie, Mikrobiologie and Hygiene, I. Abt. Orig. A 224: 478–483

    Google Scholar 

  • Fantino MG & Bazzi C (1982) Azione antagonista diPseudomonas cepacia versoFusarium oxysporum f.sp.cepae. Informatore Fitopatologico 32: 55–58

    Google Scholar 

  • Gilardi GL (1983)Pseudomonas cepacia: Culture and laboratory identification. Laboratory Management 21: 29–32

    Google Scholar 

  • —— (1978) Identification ofPseudomonas and related bacteria. In: Glucose nonfermenting gram-negative bacteria in clinical microbiology (pp 15–44). CRC press, Bocan

    Google Scholar 

  • Goldman DA & Klinger JD (1986)Pseudomonas cepacia: biology, mechanisms of virulence, epidemiology. J. Pediatrics 108: 806–812

    Google Scholar 

  • Gonzalez CF & Vidaver AK (1979) Bacteriocin, plasmid, and pectolytic diversity inPseudomonas cepacia of clinical and plant origin. J. Gen. Microbiol. 110: 161–170

    Google Scholar 

  • Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27: 857–871

    Google Scholar 

  • —— (1966) Some properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338

    Google Scholar 

  • Hagedorn C, Gould WD, Bardinelli DR & Gustavson DR (1987) A selective medium for enumeration and recovery ofPseudomonas cepacia biotypes from soil. Appl. Environ. Microbiol. 53: 2265–2268

    Google Scholar 

  • Haugland RA, Schlemm DJ, Lyons RP III, Sferra PR & Chakrabarty AM (1990) Degradation of the chlorinated phenoxyacetate herbicide 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Appl. Environ. Microbiol. 56: 1357–1362

    Google Scholar 

  • Hildebrand DC (1971) Pectate and pectin gels for differentiation ofPseudomonas sp. and other bacterial plant pathogens. Phytopathology 61: 1430–1436

    Google Scholar 

  • Holmes B (1986) The identification ofPseudomonas cepacia and its occurrence in clinical material. J. Appl. Bacteriol. 61: 299–314

    Google Scholar 

  • Homma Y, Sato Z, Hirayama F, Konno K, Shirahama S & Suzui T (1989) Production of antibiotics byPseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol. Biochem. 21: 723–726

    Google Scholar 

  • Janisiewicz WJ & Roitman J (1988) Biological control of blue and gray mold on apple and pear withPseudomonas cepacia. Phytopathology 78: 1697–1700

    Google Scholar 

  • Jayaswal RK, Fernandez MA & Schroeder RG III (1990) Isolation and characterization of aPseudomonas strain that restricts growth of various phytopathogenic fungi. Appl. Environ. Microbiol. 56: 1053–1058

    Google Scholar 

  • Jonsson V (1970) Proposal of a new species,Pseudomonas kingii. Int. J. System. Bact. 20: 255–257

    Google Scholar 

  • Kawamoto SO (1966) Studies of bacteria associated with decayed onions. MS Thesis, Cornell University, Ithaca, NY

    Google Scholar 

  • Kawamoto SO & Lorbeer JW (1976) Protection of onion seedlings fromFusarium oxysporum f.sp.cepae by seed and soil infestation withPseudomonas cepacia. Plant Dis. Rep. 60: 189–191

    Google Scholar 

  • King EO (1964) The identification of unusual pathogenic Gram negative bacteria. National Communicable Disease Center, Atlanta

    Google Scholar 

  • King EO, Ward MK & Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301–307

    Google Scholar 

  • Korth H, Romer A & Budzikiewicz H (1978) 4,9-dihydroxyphenazine-1,6-dicarboxylic acid dimethylester and the ‘missing link’ in phenazine biosynthesis. J. Gen. Microbiol. 104: 299–303

    Google Scholar 

  • Lelliott RA & Stead DE (1987) Methods for the diagnosis of bacterial diseases of plants. Blackwell Scientific, Oxford

    Google Scholar 

  • Lumsden RD, Garcia-E R, Lewis JA & Frias-T GA (1987) Suppression of damping-off caused byPythium spp. in soil from the indigenous Mexican chinampa agricultural system. Soil Biol. Biochem. 19: 501–508

    Google Scholar 

  • Lumsden RD & Sasser M (1986) Medium for the isolation ofPseudomonas cepacia biotype from soil and the isolated biotype. U.S. Patent No. 4,588,584

  • Mayr E (1988) Toward a new philosophy of biology. Belknap Press, Cambridge

    Google Scholar 

  • McArthur JV, Kovacic DA & Smith MH (1988) Genetic diversity in natural populations of a soil bacterium across a landscape gradient. Proc. Nat. Acad. Sci. USA 85: 9621–9624

    Google Scholar 

  • Meyers E, Bisacchi GS, Dean L, Liu WC, Minassian B, Slusarchyk DS, Sykes RB, Tanaka SK & Trejo W (1987) Xylocandin: a new complex of antifungal peptides. I. Taxonomy, isolation and biological activity. J. Antibiotics 40: 1515–1519

    Google Scholar 

  • Morris MB & Roberts JB (1959) A group of pseudomonads able to synthesize poly-β-hydroxybutyric acid. Nature 183: 1538–1539

    Google Scholar 

  • Nixon KC & Wheeler QD (1992) Extinction and the origin of species. In: Novacek MJ & Wheeler QD (Eds) Extinction and Phylogeny (pp. 119–143) Columbia University Press, New York

    Google Scholar 

  • Ochman H, Whittam TS, Caugant DA & Selander RS (1983) Enzyme polymorphism and genetic population structure inEscherichia coli andShigella. J. Gen. Microbiol. 129: 2715–2726

    Google Scholar 

  • Palleroni NJ (1984) Gram negative aerobic rods and cocci: Family I. Pseudomonadaceae Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1917, 555AL. In: Krieg NR & Holt JG (Eds) Bergey's manual of systematic bacteriology, Vol. 1 (pp. 141–219) Williams and Wilkins, Baltimore

    Google Scholar 

  • Palleroni NJ & Holmes B (1981)Pseudomonas cepacia sp. nov. nom. rev. Int. J. System. Bact. 31: 479–481

    Google Scholar 

  • Parke JL, Rand RE, Joy AE & King KB (1991) Biological control of Pythium damping-off and Aphanomyces root rot of peas by application ofPseudomonas cepacia orP. fluorescens to seed. Plant Disease 775: 987–992

    Google Scholar 

  • Parker WL, Rathnum ML, Seiner V, Trejo WH, Principe PA & Sykes RB (1984) Cepacin A and cepacin B, two new antibioties produced byPseudomonas cepacia. J. Antibiotics 37: 431–440

    Google Scholar 

  • Ravin AW (1963) Experimental approaches to the study of bacterial phylogeny. American Naturalist 97: 307–318

    Google Scholar 

  • Ramsay BA, Ramsay JA & Cooper DG (1989) Production of poly-β-hydroxyalkanoic acid byPseudomonas cepacia. Appl. Environ. Microbiol. 55: 584–589

    Google Scholar 

  • Sackin MJ (1987) Computer programs for classification and identification. Methods in Microbiol. 19: 459–494

    Google Scholar 

  • Sands DC, Schroth MN & Hildebrand DC (1970) Taxonomy of phytopathogenic pseudomonads. J. Bacteriol. 101: 9–23

    Google Scholar 

  • Scarlett CM, Fletcher JT, Roberts P & Lelliott RA (1978) Tomato pith necrosis caused byPseudomonas corrugata n. sp. Annals of Appl. Biol. 88: 105–114

    Google Scholar 

  • Selander RS & Levin BR (1980) Genetic diversity and structure inEscherichia coli populations. Science 210: 545–547

    Google Scholar 

  • Sinsabaugh HA & Howard GJ Jr (1975) Emendation of the description ofPseudomonas cepacia Burkholder (Synonyms:Pseudomonas multivorans Stanier et al.;Pseudomonas kingii Jonsson; EO-1 Group). Inter. J. System. Bact. 25: 187–201

    Google Scholar 

  • Skerman VBD, McGowan V & Sneath PHA (1980) Approved lists of bacterial names. Inter. J. System. Bacteriol. 30: 225–420

    Google Scholar 

  • Sneath PHA (1980a) Basic program for determining overlap between groups in an identification matrix of percent positive characters. Computers and Geosciences 6: 267–278

    Google Scholar 

  • —— (1980b) Basic program for the most diagnostic properties of groups from an identification matrix of percent positive characters. Computers and Geosciences 6: 21–26

    Google Scholar 

  • —— (1977) A method for testing the distinctness of clusters: A test of the disjunction of two clusters in Euclidean space as measured by their overlap. J. Mathematical Geology 9: 123–143

    Google Scholar 

  • —— (1968) Vigour and pattern in taxonomy. J. Gen. Bact. 54: 1–11

    Google Scholar 

  • —— (1957) Some thoughts on bacterial classification. J. Gen. Microbiol. 17: 201–226

    Google Scholar 

  • Sneath PHA & Johnson R (1972) The influence on numerical taxonomic similarities of errors in microbiological tests. J. Gen. Microbiol. 72: 377–392

    Google Scholar 

  • Sneath PHA & Sokal RR (1973) Numerical taxonomy. WH Freeman, San Francisco

    Google Scholar 

  • Sneath PHA, Stevens M & Sackin MJ (1981) Numerical taxonomy ofPseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek 47: 423–448

    Google Scholar 

  • Snell JJS, Hill LR, Lapage SP & Curtis MA (1972) Identification ofPseudomonas cepacia Burkholder and its synomy withPseudomonas kingii Jonsson. Inter. J. System. Bact. 22: 127–138

    Google Scholar 

  • Staley JT & Krieg NR (1984) Classification of procaryotic organisms: an overview. In: Krieg NR & Holt JG (Ed) Bergey's Manual of systematic bacteriology Vol. 1 (pp 1–23) Williams and Wilkins, Baltimore

    Google Scholar 

  • Stanier RY, Palleroni NJ & Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43: 159–271

    Google Scholar 

  • Stull TL, Lipuma JJ & Edlind TD (1988) A broad-spectrum probe for molecular epidemiology of bacteria: Ribosomal RNA. J. Infect. Dis. 157: 280–286

    Google Scholar 

  • Van Alfen NF & Kosuge T (1974) Microbial metabolism of the fungicide 2,6-dichloro-4-nitroaniline. J. Agr. Food Chem. 22: 221–224

    Google Scholar 

  • Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25: 233–239

    Google Scholar 

  • Venkateswarlu K & Sethunathan N (1985) Enhanced degradation of carbofuran byPseudomonas cepacia andNocardia sp. in the presence of growth factors. Plant and Soil 84: 445–449

    Google Scholar 

  • Whittam TS (1989) Clonal dynamics ofEscherichia coli in its natural habitat. Antonie van Leeuwenhoek 55: 23–32

    Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations. Vol. 2: The theory of gene frequencies. University of Chicago, Chicago

    Google Scholar 

  • Wu BJ & Thompson ST (1984) Selective medium forPseudomonas cepacia containing 9 -chloro -9 — (4 -diethylaminophenyl) -10 — phenylacridan and polymyxin B sulfate. Appl. Environ. Microbiol. 48: 743–746

    Google Scholar 

  • Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal ofBurkholderia gen. nov. and transfer of seven species of the genusPseudomonas homology group II to the new genus, with the type speciesBurkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36: 1251–1275

    Google Scholar 

  • Yohalem DS (1993) Characterization of diversity amongPseudomonas cepacia strains isolated from soils, decayed onions, and clinical sources. Ph.D. Dissertation, Cornell University, Ithaca, NY

    Google Scholar 

  • Yohalem DS & Lorbeer JW (1992) Characterization of diversity among strains ofPseudomonas cepacia isolated from clinical sources, soils, or infected onions. Phytopathology 82: 248–249 (Abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yohalem, D.S., Lorbeer, J.W. Intraspecific metabolic diversity among strains ofBurkholderia cepacia isolated from decayed onions, soils, and the clinical environment. Antonie van Leeuwenhoek 65, 111–131 (1994). https://doi.org/10.1007/BF00871753

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871753

Key words

Navigation