Skip to main content
Log in

DNA vaccines: safety and efficacy issues

  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

Summary

DNA technology has been harnessed to produce a variety of plasmid-based vaccines designed to prevent viral, bacterial and parasitic infections. The rapid adoption and implementation of this novel vaccine strategy carries with it important safety and efficacy concerns. This review will focus on whether DNA vaccines (1) are likely to induce systemic or organ-specific autoimmune disease, (2) have the potential to induce tolerance rather than immunity, and (3) are as effective in individuals with depressed immune function as they are in healthy adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Points to consider on Plasmid DNA Vaccines for Preventive Infectious Disease Indications (1996) Obtain from: Office of Communication, Training and Manufacturers Assistance (HFM-10) Center for Biologics Evaluation and Research, FDA, Bethesda

  2. Bloom ET, Kubota LF, Kawakami K (1988) Age-related decline in the lethal hit but not the binding stage of cytotoxic T cell activity in mice. Cell Immunol 114:440

    PubMed  Google Scholar 

  3. Broody JA, Brock DB (1985) In: Finch CE, Schneider FL (eds) Handbook of the biology of aging, 2nd edn. Epidemiologic and statistical characteristics of this United States elderly population. Van Nostrand Reinhold, New York, pp 3–20

    Google Scholar 

  4. Cardon LR, Burge C, Clayton DA, Karlin S (1994) Pervasive CpG suppression in animal mitochondrial genomes. Proc Natl Acad Sci USA 91:3799

    PubMed  Google Scholar 

  5. Cox GJ, Zamb TJ, Babiuk LA (1993) Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. J Virol 67:5664

    PubMed  Google Scholar 

  6. Ebling FM, Hahn BH (1980) Restricted subpopulations of DNA antibodies in kidneys of mice with systemic lupus. Arthritis Rheum 23:392

    PubMed  Google Scholar 

  7. Effros RB, Watford RL (1983) Diminished T cell response to influenza virus in aged mice. Immunology 49:387

    PubMed  Google Scholar 

  8. Effros RB, Walford RL (1984) The effect of age on the antigen-presenting mechanism in limiting dilution precursor cell frequency analysis. Cell Immunol 88:531

    PubMed  Google Scholar 

  9. Ernst DN, Hobbs MV, Torbert BE, Glasebrook AL, Rehse MA, Bottomly K, Hayakawa K, Hardy RR, Weigle WO (1990) Differences in the expression profiles of CD45 membrane antigens and in the pattems of lymphokine secretion by splenic CD4+ T cells from young and aged mice. J Immunol 145:1295

    PubMed  Google Scholar 

  10. Gilkeson GS, Riuz P, Howell D, Lefkowith JB, Pisetsky DS (1993) Induction of immune-mediated glomerulonephritis in normal mice immunized with bacterial DNA. Clin Immunol Immunopathol 68:283

    PubMed  Google Scholar 

  11. Gilkeson GS, Pippen AM, Pisetsky DS (1995) Induction of cross-reactive anti-dsDNA antibodies in preautoimmune NZB/NZW mice by immunization with bacterial DNA. J Clin Invest 95:1398

    PubMed  Google Scholar 

  12. Hagiwara E, Gourley M, Lee S, Klinman DM (1996) Disease severity in patients with systemic lupus erythematosus correlates with an increased ratio of IL-10: IFN-gamma secreting cells in the peripheral blood. Arthritis Rheum 39:379

    PubMed  Google Scholar 

  13. Halpern MD, Kurlander RJ, Pisetsky DS (1996) Bacterial DNA induces murine interferon-gamma production by stimulation of IL-12 and tumor necrosis factor-alpha. Cell Immunol 167:72

    PubMed  Google Scholar 

  14. Hobbs MV, Weigle WO, Ernst DN (1994) IL-10 production by splenic CD4+ cells and cell subsets from young and old mice. Cell Immunol 154:264

    PubMed  Google Scholar 

  15. Horvath JA, Mostowski HS, Okumura K, Bloom ET (1992) Pore-forming protein in individual CTL. The effect of senescence provides a probe for understanding the lytic mechanism. Eur J Immunol 22:2649

    PubMed  Google Scholar 

  16. Klinman NR (1972) The mechanism of antigenic stimulation of primary and secondary clonal precursor cells. J Exp Med 136:241

    PubMed  Google Scholar 

  17. Klinman DM (1990) Polyclonal B cell activation in lupus-prone mice precedes and predicts the development of autoimmune disease. J Clin Invest 86:1249

    PubMed  Google Scholar 

  18. Klinman DM (1992) Analysis of B lymphocytes cross-reactivity at the single cell level. J Immunol Methods 152:217

    PubMed  Google Scholar 

  19. Klinman DM, Steinberg AD (1987) Systemic autoimmune disease arises from polyclonal B cell activation. J Exp Med 165:1755

    PubMed  Google Scholar 

  20. Klinman NR, Sigal NH, Metcalf ES, Pierce SK, Gearhart PJ (1976) The interplay of evolution and environment in B-Cell diversification. Cold Spr Harbor Symp Quant Biol 41:165

    Google Scholar 

  21. Klinman DM, Shirai A, Ishigatsubo Y, Conover J, Steinberg AD (1991) Quantitation of IgG and IgM secreting B cells in the peripheral blood of patients with systemic lupus erythematosus. Arthritis Rheum 34:1404

    PubMed  Google Scholar 

  22. Klinman DM, Yi A, Beaucage SL, Conover J, Krieg AM (1996) CpG motifs expressed by bacterial DNA rapidly induce lymphocytes to secrete IL-6, IL-12 and IFN-γ. Proc Natl Acad Sci USA 93:2879

    PubMed  Google Scholar 

  23. Klinman DM, Yamshchikov G, Ishigatsubo Y (1997) Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol 158:3635

    PubMed  Google Scholar 

  24. Krieg AM, Yi A, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546

    Article  PubMed  Google Scholar 

  25. Kubo M, Cinader B (1990) Polymorphism of age-related changes in interleukin production: differential changes of T helper subpopulations, synthesizing IL-2, IL-3, and IL-4. Eur J Immunol 20:1289

    PubMed  Google Scholar 

  26. Lambert PH, Dixon FJ (1968) Pathogenesis of the glomerulonephritis of NZB/W mice. J Exp Med 127:507

    PubMed  Google Scholar 

  27. Lehtonen L, Eskola J, Vainio O, Lehtonen A (1990) Changes in lymphocyte subsets and immune competence in very advanced age. J Gerontol 45:M108

    PubMed  Google Scholar 

  28. Linker-Israeli M, Deans R, Wallace D, Prehn J, Ozeri-Chen T, Klinenberg J (1991) Elevated levels of endogenous IL-6 in systemic lupus erythematosus. J Immunol 147:117

    PubMed  Google Scholar 

  29. Manthorpe M, Comefert JF, Hartikka J, Felgner J, Rundell A, Margalith M, Dwarki V (1993) Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice. Hum Gene Ther 4:419

    PubMed  Google Scholar 

  30. Marodon G, Rocha B (1995) Activation and ‘deletion’ of self-reactive mature and immature T cells during ontogeny of Mls-la: implications for neonatal tolerance induction. Int Immunol 6:1899

    Google Scholar 

  31. Miller RA (1989) The cell biology of aging: immunologic models. J Gerontol 44:114

    Google Scholar 

  32. Mor G, Klinman DM, Shapiro S, Hagiwara E, Sedegah M, Norman JA, Hoffman SL, Steinberg AD (1995) Complexity of the cytokine and antibody response elicited by immunizing mice withPlasmodium yoelii circumsporozoite protein plasmid DNA. J Immunol 155:2039

    PubMed  Google Scholar 

  33. Mor G, Singla M, Steinberg AD, Hoffman SL, Okuda K, Klinman DM (1997) Do DNA vaccines induce autoimmune disease? Hum Gene Ther 8:293

    PubMed  Google Scholar 

  34. Oshima T, Delespesse G (1997) T cell derived IL-4 and dendritic cell-derived IL-12 regulate the lymphokine-producing phenotype of alloamigen primed naive human CD4 T cells. J Immunol 158:629

    PubMed  Google Scholar 

  35. Paganelli R, Scala E, Quinti I, Ansotegui IJ (1994) Humoral immunity in aging. Aging Clin Exp Res 6:143

    Google Scholar 

  36. Pincus T, Schur PH, Rose JA, Decker JL, Talal N (1970) Measurement of serum anti-DNA binding activity in systemic lupus erythematosus. N Engl J Med 281:701

    Google Scholar 

  37. Pisetsky DS, Reich C, Crowley SD, Halpern MD (1995) Immunological properties of bacterial DNA. Ann NY Acad Sci 772:152

    PubMed  Google Scholar 

  38. Razin A, Friedman aJ (1981) DNA methylation and its possible biological roles. Prog Nucleic Acid Res Mol Biol 25:33

    PubMed  Google Scholar 

  39. Robinson HL, Feltquate DM, Morin MJ, Haynes JR, Webster RG (1995) DNA vaccines: a new approach to immunization. Int J Immunopharmacol 17:79

    PubMed  Google Scholar 

  40. Sarzotti M, Robbins DS, Hoffman PM (1996) Induction of protective CTL responses in newborn mice by a murine retrovirus. Science 271:1726

    PubMed  Google Scholar 

  41. Sato Y, Roman M, Tighe H, Lee D, Corm M, Nguyen M, Carson DA, Raz E (1996) Non-coding bacterial DNA sequences necessary for effective intradermal gene immunization. Science 273:352

    Google Scholar 

  42. Scollary RGE, Butcher EC, Weissman IL (1980) Thymus cell migration. Quantitative aspects of cellular traffic from the thymus to the periphery in mice. Eur J Immunol 10:210

    PubMed  Google Scholar 

  43. Sedegah M, Hedstrom R, Hobart P, Hoffman SL (1994) Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc Natl Acad Sci USA 91:9866

    PubMed  Google Scholar 

  44. Shirai A, Holmes K, Klinman DM (1993) Detection and quantitation of cells secreting IL-6 under physiological conditions in BALB/c mice. J Immunol 150:793

    PubMed  Google Scholar 

  45. Shirai A, Sierra V, Kelly CI, Klinman DM (1994) Individual cells simultaneously produce both IL-4 and IL-6 under physiologic conditions in vivo. Cytokine 6:329

    PubMed  Google Scholar 

  46. Silverstein AM (1997) Ontogeny of the immune response: a perspective. In: Cooper MD (ed) Development of Host Defenses. Raven Press, New York, pp 1–10

    Google Scholar 

  47. Silverstein AM, Segal S (1975) The ontogeny of antigen-specific T cells. J Exp Med 142:802

    PubMed  Google Scholar 

  48. Steinberg AD, Krieg AM, Gourley MF, Klinman DM (1990) Theoretical and experimental approaches to generalized autoimmunity. Immunol Rev 118:129

    PubMed  Google Scholar 

  49. Sterzl J, Silverstein AM. (1967) Developmental aspects of immunity. Adv Immunol 6:337

    PubMed  Google Scholar 

  50. Steward MW, Hay FC (1976) Changes in immunoglobulin class and subclass of anti-DNA antibodies to DNA and RNA. II. Sequential switch from IgM to IgG in NZB/W F1 mice. Clin Exp Immunol 26:363

    PubMed  Google Scholar 

  51. Tang D, DeVit M, Johnston SA (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356:152

    PubMed  Google Scholar 

  52. Tascon RE, Colston MJ, Ragno S, Stavropoulos E, Gregory D, Lowrie DB (1996) Vaccination against tuberculosis by DNA injection. Nature Med 2:888

    PubMed  Google Scholar 

  53. Thoman ML, Weigle WO (1989) The cellular and subcellular bases of immunosenescence. Adv Immunol 46:221

    PubMed  Google Scholar 

  54. Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, Gromkoski SH, Deck RR, DeWitt CM, Friedman A (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein [see comments]. Science 259:1745

    PubMed  Google Scholar 

  55. Wang B, Ugen KE, Srikantan V, Agadjanyan MG, Dang K, Refaeli Y, Sato A, Boyer J, Williams WV, Weiner DB (1993) Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci USA 90:4156

    PubMed  Google Scholar 

  56. Wolff JA, Malone RW, Williams P, Chong W, Ascadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinman, D.M., Takeno, M., Ichino, M. et al. DNA vaccines: safety and efficacy issues. Springer Semin Immunopathol 19, 245–256 (1997). https://doi.org/10.1007/BF00870272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00870272

Keywords

Navigation