Skip to main content
Log in

Prospects for induction of tolerance in renal transplantation

  • Occasional Survey
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Immunological tolerance is the ultimate goal of transplantation immunobiology. Current therapies involve nonspecific immunosuppression with concomitant risks for infection, malignancy, and drug-specific side effects. By inducing specific immune unresponsiveness to the graft it should be possible to maintain transplants without the need for chronic drug administration and without the risks of nonspecific immunosuppression. This review highlights recent progress in the understanding of immunological tolerance, with special attention to the long-term prospects for successful induction of tolerance in renal transplant patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krensky AM, Weiss A, Crabtree G, Davis MM, Parham P (1990) T-lymphocyte-antigen interactions in transplant rejection. N Engl J Med 322: 510–517

    Google Scholar 

  2. Pescovitz MD (1992) Organ acceptance and rejection. Curr Opin Immunol 4: 577–581

    Google Scholar 

  3. Owen R (1945). Immunogenetic consequences of vascular anastomosis between bovine twins. Science 102: 400–401

    Google Scholar 

  4. Burnet FM, Fenner F (1949) The production of antibodies. Macmillan, London

    Google Scholar 

  5. Billingham R, Brent L, Medawar P (1953) Actively acquirec tolerance of foreign cells. Nature 172: 603–606

    Google Scholar 

  6. Nossal GJ (1994) Negative selection of lymphocytes. Cell 76: 229–239

    Google Scholar 

  7. Hugo P, Kappler JW, Godfrey DI, Marrack PC (1994) Thymic epithelial cell lines that mediate positive selection can also induce thymocyte clonal deletion. J Immunol 152: 1022–1031

    Google Scholar 

  8. Felton LD (1949) Significance of antigen in animal tissues. J Immunol 61: 107–117

    Google Scholar 

  9. Schwartz RH, Mueller DL, Jenkins MK, Quill H (1989) T-cell clonal anergy. Cold Spring Harb Symp Quant Biol 2: 605–610

    Google Scholar 

  10. Ledbetter JA, Martin PJ, Spooner CE, Wofsy D, Tsu TT, Beatty PG, Gladstone P (1985) Antibodies to Tp67 and Tp44 augment and sustain proliferative responses of activated T cells. J Immunol 135: 2331–2336

    Google Scholar 

  11. Truitt KE, Hicks CM, Imboden JB (1994) Stimulation of CD28 triggers an association between CD28 and phosphatidylinositol 3-kinase in Jurkat T cells J Exp Med 179: 1071–1076

    Google Scholar 

  12. Linsley PS, Ledbetter JA (1993) The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 11: 191–212

    Google Scholar 

  13. Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo V Jr, Lombard LA, Gray GS, Nadler LM (1993) Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262: 909–911

    Google Scholar 

  14. Hathcock KS, Laszlo G, Dickler HB, Bradshaw J, Linsley P, Hodes RJ (1993) Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science 262: 905–907

    Google Scholar 

  15. Azuma M, Ito D, Yagita H, Okumura K, Phillips JH, Lanier LL, Somoza C (1993) B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366: 76–79

    Google Scholar 

  16. Lenschow DJ, Su GH, Zuckerman LA, Nabavi N, Jellis CL, Gray GS, Miller J, Bluestone JA (1993) Expression and functional significance of an additional ligand for CTLA-4. Proc Natl Acad Sci USA 90: 11054–11058

    Google Scholar 

  17. Wyss-Coray T, Mauri-Hellweg, D, Baumann K, Bettens F, Grunow R, Pichler WJ (1993) The B7 adhesion molecule is expressed on activated human T cells: functional involvement in T-T cell interactions. Eur J Immunol 23: 2175–2180

    Google Scholar 

  18. Turka LA, Linsley PS, Lin H, Brady W, Leiden JM, Wei RQ, Gibson ML, Zheng XG, Myrdal S, Gordon D, et al. (1992) T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA 89: 11102–11105

    Google Scholar 

  19. Lin H, Bolling SF, Linsley PS, Wei RQ, Gordon D, Thompson CB, Turka LA (1993) Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific transfusion. J Exp Med 178: 1801–1806

    Google Scholar 

  20. Gershon RK, Kondo K (1971) Infectious immunological tolerance. Immunology 21: 903–914

    Google Scholar 

  21. Hilgert I (1979) The involvement of activated specific suppressor T cells in maintenance of transplantation tolerance. Immunol Rev 46: 27–53

    Google Scholar 

  22. Khoury SJ, Hancock WW, Weiner HL (1992), Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med 176: 1355–1364

    Google Scholar 

  23. Starzl TE, Demetris AJ, Murase N, Thomson AW, Trucco M, Ricordi C (1993) Donor cell chimerism permitted by immunosuppressive drugs: a new view of organ transplantation. Immunol Today 14: 326–332

    Google Scholar 

  24. McDaniel DO, Naftilan J, Hulvey K, Hulvey K, Shaneyfelt S, Lemons JA, Lagoo-Deenadayalan S, Hudson S, Diethelm AG, Barber WH (1994) Peripheral blood chimerism in renal allograft recipients transfused with donor bone marrow. Transplantation 57: 852–856

    Google Scholar 

  25. Starzl TE, Demetris AJ, Trucco M, Zeevi A, Ramos H, Terasaki P, Rudert WA, Kocova M, Ricordi C, Ildstad S et al (1993) Chimerism and donor-specific nonreactivity 27 to 29 years after kidney allotransplantation. Transplantation 55: 1272–1277

    Google Scholar 

  26. Rhynes VK, McDonald JC, Gelder FB, Aultman DF, Hayes JM, McMillan RW, Mancini MC (1993) Soluble HLA class I in the serum of transplant recipients. Ann Surg 217: 485–489, 489–491

    Google Scholar 

  27. Suberbielle C, Caillat-Zucman S, Legendre C, Bodemer C, Noel L-H, Kreis H, Bach J-F (1994) Peripheral microchimerism in long-term cadaveric-kidney allograft recipients. Lancet 343: 1468–1469

    Google Scholar 

  28. Schlitt HJ, Hundreiser J, Hisanaga M, Uthoff K, Karck M, Wahlers T, Wonigeit K, Pichlmayr R (1994) Patterns of donor-type microchimerism after heart transplantation. Lancet 343: 1469–1470

    Google Scholar 

  29. Thomas JM, Carver FM, Cunningham PR, Olson LC, Thomas FT (1991) Kidney allograft tolerance in primates without chronic immunosuppression — the role of veto cells Transplantation 51: 198–207

    Google Scholar 

  30. Tscherning T, Claesson MH (1993) Veto suppression: the peripheral way of T cell tolerization. Exp Clin Immunogenet 10: 179–188

    Google Scholar 

  31. Miller A, al-Sabbagh A, Santos LM, Das MP, Weiner HL (1993) Epitopes of myelin basic protein that trigger TGF-beta releasea after oral tolerization are distinct from encephalitogenic epitopes and mediate epitope-driven bystander suppression. J Immunol 151: 7307–7315

    Google Scholar 

  32. Robinson MTJK (1989) Major histocompatibility complex antigens and genes. In: Paul W (ed) Fundamental immunology Raven, New York, pp 489–539

    Google Scholar 

  33. Wood KJ (1991) Alternative approaches for the induction of transplantation tolerance. Immunol Lett 29: 133–137

    Google Scholar 

  34. Whitehead BF, Stoehr C, Wu CJ, Patterson G, Burchard EG, Theodore J, Clayberger C, Starnes VA (1993) Cytokine gene expression in human lung transplant recipients. Transplantation 56: 956–961

    Google Scholar 

  35. Zhao XM, Frist WH, Yeoh TK, Miller GG (1993) Expression of cytokine genes in human cardiac allografts: correlation of II-6 and transforming growth factor-beta (TGF-beta) with histological rejection. Clin Exp Immunol 93: 448–451

    Google Scholar 

  36. Jordan SC, Czer L, Toyoda M, Galfayan K, Doan D, Fishbein M, Blanche C, Trento A (1993) Serum cytokine levels in heart allograft recipients: correlation with findings on endomyocardial biopsy. J Heart Lung Transplant 12: 333–337

    Google Scholar 

  37. Noronha IL, Eberlein-Gonska M, Hartley B, Stephen S, Cameron JS, Waldherr R (1992) In situ expression of tumor necrosis factor-alpha, interferon-gamma, and interleukin-2 receptors in renal allograft biopsies. Transplantation 54: 1017–1024

    Google Scholar 

  38. Dallman MJ, Larsen CP, Morris PJ (1991) Cytokine gene transcription in vascularised organ grafts: analysis using semiquantitative polymerase chain reaction. J Exp Med 174: 493–496

    Google Scholar 

  39. Tovey MG, Deglise-Favre A, Schoevaert D (1993) Differential in situ expression of cytokine genes in human renal transplantation. Kidney Int [Suppl] 39: S129-S132

    Google Scholar 

  40. Krams SM, Falco DA, Villanueva JC, Rabkin J, Tomlanovich SJ, Vincenti F, Amend WJ, Melzer J, Garovoy MR, Roberts JP, et al (1992) Cytokine and T cell receptor gene expression at the site of allograft rejection. Transplantation 53: 151–156

    Google Scholar 

  41. Yard BA, Kooymans-Couthino M, Paape ME, Brujin JA, Daha MR, Es LA van, Woude FJ van der (1994) Analysis of cytokine production by graft-infiltrating cells isolated from rejecting renal allografts. Transplantation 57: 153–155

    Google Scholar 

  42. Wu CJ, Lovett M, Wong-Lee J, Moeller F, Kitamura M, Goralski TJ, Billingham ME, Starnes VA, Clayberger C (1992) Cytokine gene expression in rejecting cardiac allografts. Transplantation 54: 326–332

    Google Scholar 

  43. Martinez OM, Villanueva JC, Lake J, Roberts JP, Ascher NL, Krams SM (1993) IL-2 and IL-5 gene expression in response to alloantigen in liver allograft recipients and in vitro. Transplantation 55: 1159–1166

    Google Scholar 

  44. Blancho G, Moreau JF, Chabannes D, Chatenoud L, Soulillou JP (1993) HILDA/LIF, G.CSF, IL-1, beta, IL-6, and TNF alpha production during acute rejection of human kidney allografts. Transplantation 56: 597–602

    Google Scholar 

  45. Pizarro TT, Malinowska K, Kovacs EJ, Clancy J Jr, Robinson JA, Piccinini LA (1993) Induction of TNF alpha and TNF beta gene expression in rat cardiac transplants during allograft rejection. Transplantation 56: 399–404

    Google Scholar 

  46. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136: 2348–2357

    Google Scholar 

  47. Nickerson PW, Steurer W, Steiger J, Strom TB (1994) In pursuit of the “holy grail”: allograft tolerance. Kidney Int [Suppl] 44: S40-S49

    Google Scholar 

  48. Wood KJ (1990) Transplantation tolerance with monoclonal antibodies. Semin Immunol 2: 389–399

    Google Scholar 

  49. Waldmann H, Cobbold S (1993) The use of monoclonal antibodies to achieve immunological tolerance. Immunol Today 14: 247–251

    Google Scholar 

  50. Cobbold SP (1991) Monoclonal antibody therapy for the induction of transplantation tolerance. Immunol Lett 29: 117–121

    Google Scholar 

  51. Lazarovits AI, Rochon J, Banks L, Hollomby DJ, Muirhead N, Jevnikar AM White MJ, Amlot PL, Beauregard-Zollinger L, Stiller CR (1993) Human mouse chimeric CD7 monoclonal anti-body (SDZCHH380) for the prophylaxis of kidney transplant rejection. J Immunol 150: 5163–5174

    Google Scholar 

  52. Haug CE, Colvin RB, Delmonico FL, Auchincloss H Jr, Tolkoff-Rubin N, Preffer FI, Rothlein R, Norris S, Scharschmidt L, Cosimi AB (1993) A phase I trial of immunosuppression with anti-ICAM-I (CD54) mAb in renal allograft recipients. Transplantation 55: 766–772 772–773

    Google Scholar 

  53. Kahan BD (1992) Immunosuppressive therapy. Curr Opin Immunol 4: 553–560

    Google Scholar 

  54. Opelz G, Terasaki PI (1978) Improvement of kidney-graft survival with increased numbers of blood transfusions. N Engl J Med 299: 799–803

    Google Scholar 

  55. Twuyver E van, Mooijaart RJ, Berge IJ ten, Horst AR van der, Wilmink JM, Kast WM, Melief CJ, Waal LP de (1991) Pretransplantation blood transfusion revisited. N Engl J Med 325: 1210–1213

    Google Scholar 

  56. McDaniel DO, Naftilan J, Hulvey K, Shaneyfelt S, Lemons JA, Lagoo-Deenadayalan S, Hudson S, Diethelm AG, Barber WH (1994) Peripheral blood chimerism in renal allograft recipients transfused with donor bone marrow. Transplantation 57: 852–856

    Google Scholar 

  57. Barber WH, Mankin JA, Laskow DA, Deierhoi MH, Julian BA, Curtis JJ, Diethelm AG (1991) Long-term results of a controlled prospective study with transfusion of donor-specific bone marrow in 57 cadaveric renal allograft recipients. Transplantation 51: 70–75

    Google Scholar 

  58. Wood KJ (1993) The induction of tolerance to alloantigens using MHC class I molecules. Curr Opin Immunol 5: 759–762

    Google Scholar 

  59. Nisco S, Vriens P, Hoyt G Lyu SC, Farfan F, Pouletty P, Krensky AM, Clayberger C (1994) Induction of allograft tolerance in rats by an HLA class-I-derived peptide and cyclosporine A. J Immunol 152: 3786–3792

    Google Scholar 

  60. Sayegh MH, Khoury SJ, Hancock WW, Weiner HL, Carpenter CB (1992) Induction of immunity and oral tolerance with polymorphic class II major histocompatibility complex allopeptides in the rat. Proc Natl Acad Sci USA 89: 7762–7766

    Google Scholar 

  61. Krensky A, Clayberger C (1994) The induction of tolerance to alloantigens using HLA based synthetic peptides. Curr Opin Immunol (in press)

  62. Posselt AM, Barker CF, Tomaszewski JE, Markmann JF, Choti MA, Naji A (1990) Induction of donor-specific unresponsiveness by intrathymic islet transplantation (see comments). Science 249: 1293–1295

    Google Scholar 

  63. Perico N, Rossini M, Imberti O, Remuzzi G (1991) Thymusmediated immune tolerance to renal allograft is donor but not tissue specific. J Am Soc Nephrol 2: 1063–1071

    Google Scholar 

  64. Oluwole SF, Chowdhury NC, Jin MX, Hardy MA (1993) Induction of transplantation tolerance to rat cardiac allografts by intrathymic inoculation of allogeneic soluble peptides. Transplantation 56: 1523–1527

    Google Scholar 

  65. Weigle WO, Skidmore BJ (1975) Mechanism of activation and tolerance induction in B lymphocytes. Transplant Rev 23: 250–257

    Google Scholar 

  66. Genco RJ, Linzer R, Evans RT (1983) Effect of adjuvants on orally administered antigens. Ann NY Acad Sci 409: 650–668

    Google Scholar 

  67. Tomasi T Jr (1980) Oral tolerance. Transplantation 29: 353–356

    Google Scholar 

  68. Zoller KM, Cho SI, Cohen JJ, Harrington JT (1980) Cessation of immunosuppressive therapy after successful transplantation: a national survey. Kidney Int 18: 110–114

    Google Scholar 

  69. Hammerling GJ, Schonrich G, Ferber I, Arnold B (1993) Peripheral tolerance as a multi-step mechanism. Immunol Rev 133: 93–104

    Google Scholar 

  70. Young AJ, Hay JB, Mackay CR (1993) Lymphocyte recirculation and life span in vivo. Curr Top Microbiol Immunol 184: 161–173

    Google Scholar 

  71. Coutinho A, Bandeira A (1989) Tolerize one, tolerize them all: tolerance is self-assertion. Immunol Today 10: 264–266

    Google Scholar 

  72. Krangel MS (1987) Two forms of HLA class I molecules in human plasma. Hum Immunol 20: 155–165

    Google Scholar 

  73. Tartter PI (1992) The association of perioperative blood transfusion with colorectal cancer recurrence. Ann Surg 216: 633–638

    Google Scholar 

  74. Rosemurgy AS, Hart MB, Murphy CG, Albrink MH, Piazza A, Leparc GF, Harris RE (1992) Infection after injury: association with blood transfusion. Am Surg 58: 104–107

    Google Scholar 

  75. Nelson JL, Hughes KA, Smith AG, Nisperos BB, Branchaud AM, Hansen JA (1993) Maternal-fetal disparity in HLA class II alloantigens and the pregnancy-induced amelioration of rheumatoid arthritis N Engl J Med 329: 466–471

    Google Scholar 

  76. Davies HS, Pollard SG, Calne RY (1989) Soluble HLA antigens in the circulation of liver graft recipients. Transplantation 47: 524–527

    Google Scholar 

  77. Thomas JM, Carver FM, Kasten-Jolly J, Haisch CE, Rebellato LM, Gross U, Vore SJ, Thomas FT (1994) Further studies of veto activity in rhesus monkey bone marrow in relation to allograft tolerance and chimerism. Transplantation 57: 101–115

    Google Scholar 

  78. Barber WH, Mankin JA, Laskow DA, Deierhoi MH, Julian BA, Curtis JJ, Diethelm AG (1991) Long-term results of a controlled prospective study with transfusion of donor-specific bone marrow in 57 cadaveric renal allograft recipients. Transplantation 51: 70–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krensky, A.M., Clayberger, C. Prospects for induction of tolerance in renal transplantation. Pediatr Nephrol 8, 772–779 (1994). https://doi.org/10.1007/BF00869120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00869120

Key words

Navigation