Skip to main content
Log in

Enhancement of surface-atmosphere fluxes by desert-fringe vegetation through reduction of surface albedo and of soil heat flux

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

The influence of desert-fringe vegetation on the daytime sensible heat flux is examined. The calculations are based on a previously developed surface albedo model for the plants/soil surface and the soil heat flux observational data for both bare and vegetated areas. It is found that the sensible heat flux from an ecosystem in a fenced-off area (exclosure) in the Sinai is larger than that from bare soil (overgrazed areas outside the exclosure) by a factor of 1.5 to 2.0, depending on the solar zenith angle. The contributions to this enhanced flux from the albedo reduction and the soil heat flux reduction are of the same magnitude.

Various studies have established that a larger heat flux increases daytime convection and boundary layer growth, and thus an enhanced flux increases the probabilities for precipitation even in a parched region when moisture is advected from outside. The results of this investigation therefore suggest that removal of desert-fringe vegetation can reduce precipitation and promote drought.

Zusammenfassung

Es wird der Einfluß der Vegetation am Rande der Wüste auf den tagsüber fühlbaren Wärmefluß untersucht. Die Rechnungen basieren auf einem früher entwickelten Modell für die Oberflächenalbedo der Pflanzen-/Erdoberfläche und auf Meßwerten für den Wärmefluß von vegetationslosen und bewachsenen Flächen. Wir finden, daß der fühlbare Wärmefluß eines abgezäunten Ökosystems in der Sinai um einen Faktor 1,5 bis 2,0 größer ist (abhängig vom Sonnenstand) als der Wärmefluß von einer unbewachsenen, abgegrasten Fläche außerhalb der Einzäunung. Die Beiträge zu diesem verstärkten Fluß kommen zu gleichen Teilen von der Reduktion der Albedo und des Wärmeflusses in den Erdboden.

Mehrere Studien haben gezeigt, daß ein größerer Wärmefluß die Konvektion am Tage verstärkt, zu einer höheren Grenzschicht führt und daß deshalb ein verstärkter Wärmefluß eine Zunahme der Niederschlagswahrscheinlichkeit sogar in ausgetrockneten Gebieten bewirkt, wenn die Feuchtigkeit von außen durch Advektion zugeführt wird. Das Ergebnis dieser Untersuchung zeigt, daß die Vernichtung von Vegetation am Rande der Wüste zu einer Verringerung der Niederschläge führen kann und die Austrocknung gefördert wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkofsky, L., 1977: The relation between surface albedo and vertical velocity in a desert.Beitr Phys Atmos. 50, 312–320.

    Google Scholar 

  • Black, J. F., Tarmy, B. L., 1963: The use of asphalt coatings to increase rainfall.J. Appl. Meteor. 2, 557–564.

    Google Scholar 

  • Brunt, D., 1932: Notes on radiation in the atmosphere (I.).Quart. J. Roy. Meteor. Soc. 58, 389–418.

    Google Scholar 

  • Charney, J. G., 1975: Dynamics of deserts and drought in the Sahel.Quart J. Roy. Meteor. Soc. 101, 193–202.

    Google Scholar 

  • Clothier, B. E., Clawson, K. L., Pinter Jr., P. J., Moran, M. S., Reginato, R. J., Jackson, R. D., 1986: Estimation of soil heat flux from net radiation during the growth of alfalfa.Agric Forest Meteor. 37, 319–329.

    Google Scholar 

  • Federer, C. A., 1968: Spatial variation of net radiation, albedo and surface temperature of forests.J. Appl. Meteor. 7, 789–795.

    Google Scholar 

  • Fuchs, M., Hadas, A., 1972: The heat flux density in a nonhomogeneous bare loessial soil.Bound. Layer Meteor. 3, 191–200.

    Google Scholar 

  • Hillel, D., 1980:The Fundamentals of Soil Physics. New York: Academic Press, 413 pp.

    Google Scholar 

  • Idso, S. B., Aase, J. K., Jackson, R. D., 1975: Net radiation—soil heat flux relations as influenced by soil water content variations,Bound. Layer Meteor. 9, 113–122.

    Google Scholar 

  • Jackson, R. D., Idso, S. B., 1975: Surface albedo and desertification.Science 189, 1012–1013.

    Google Scholar 

  • Kutiel, H, 1977: The distribution of rainfall by intensity in Israel (in Hebrew). M. Sc. Thesis, Department of Geography, Hebrew University Jerusalem, Israel.

    Google Scholar 

  • Lettau, H. H., 1969: Note on aerodynamic roughness—parameter estimation on the basis of roughness—element description.J. Appl. Meteor. 8, 828–832.

    Google Scholar 

  • Malkus, J. S., 1963: Tropical rain induced by small natural heat source.J. Appl. Meteor. 2, 547–556.

    Google Scholar 

  • McGarry, M. M., Reed, R. J., 1978: Diurnal variations in convective activity and precipitation during Phases II and III of Gate,Mon. Wea. Rev. 106, 101–113.

    Google Scholar 

  • Nicholson, S. E., 1979: Climatic variations in the Sahel and other African regions during the past five centuries.J. Arid Environments 1, 3–24.

    Google Scholar 

  • Otterman, J., 1974: Baring high—albedo soils by overgrazing: a hypothesized desertification mechanism.Science 186, 531–533.

    Google Scholar 

  • Otterman, J., 1978: Single—scattering solution for radiative transfer through a turbid atmosphere.Appl. Opt. 17, 3431–3438.

    Google Scholar 

  • Otterman, J., 1981a: Plane with protrusions as an atmospheric boundary.J. Geophys. Res. 86, 6627–6630.

    Google Scholar 

  • Otterman, J., 1981b: Satellite and field studies of man's impact on the surface of arid regions.Tellus 33, 68–77.

    Google Scholar 

  • Otterman, J., Sharon, D., 1979: Day/night partitioning of rain in an arid region: computational approaches, results for the Negev, and meteorological/climatological implications.J. Rech. Atmos. 13, 11–20.

    Google Scholar 

  • Otterman, J, Robinove, C. J., 1982: Landsat monitoring of desert vegetation growth, 1972–1979, using a plant shadowing models.Advances in Space Research 2, 45–50.

    Google Scholar 

  • Otterman, J., Tucker, C. J., 1985: Satellite measurements of surface albedo and temperatures in semi desert.J. Climate Appl. Meteor. 24, 228–235.

    Google Scholar 

  • Otterman, J., Deering, D., Eck, T., Ringrose, S., 1987: Techniques of ground-truth measurements of desert-scrub structure.Advances in Space Research,7, 153–158.

    Google Scholar 

  • Shaia, J. S., Jaffe, S., 1976: Midday inversions over Bet Bagan, Series A Meteorological Notes #33, Israel Meteorological Service, Bet Dagan, Israel.

    Google Scholar 

  • Sharon, D., 1972: The spottiness of rainfall in a desert area.J. Hydrol. 7, 161–175.

    Google Scholar 

  • Swinbank, W. C., 1963: Longwave radiation from clear skies.Quart. J. Roy. Meteor. Soc. 89, 339–348.

    Google Scholar 

  • Thalen, D. C. P., 1979:Ecology and Utilization of Desert Shrub Rangelands in Iraq The Hague: Dr. W. Junk B. V. Publishers, 448 pp.

    Google Scholar 

  • Waisel, Y. 1986: Interactions among plants, man and climate: historical evidence from Israel. Proceedings of the Royal Society of Edinburgh, 89B, 255–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otterman, J. Enhancement of surface-atmosphere fluxes by desert-fringe vegetation through reduction of surface albedo and of soil heat flux. Theor Appl Climatol 40, 67–79 (1989). https://doi.org/10.1007/BF00867793

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00867793

Keywords

Navigation